
Tool- and Skill-based Robot Manipulation Task and Motion Planner

Himani Sinhmar, Guy Scher, Amy Fang, and David Gundana

I. INTRODUCTION AND RELATED WORK

Planning in robotics is traditionally divided into two: low-
level, that deal with voltages to motors, obstacle avoidance
and dynamically constrained trajectories; and high-level,
which work with symbolic representations of actions and
results. In this paper we focus on the latter in order to
compose a series of actions to perform some high-level tasks
never previously hard-coded to the robot.

In [1], the authors present a task and motion planner that
uses a top-down approach to satisfy high-level tasks. They
create a hierarchical tree that lead to the satisfaction of given
tasks constructed using pre-conditions and post-conditions
of actions. They can then exploit STRIPS and Planning
Domain Definition Language (PDDL) to solve the task
using automated and always-evolving artificial intelligence
(AI) planning algorithms. Authors in [2] create a system to
use modular robots to satisfy high level tasks that contain
multiple parts described by Linear Temporal Logic (LTL).
Using a set of known configurations for modular robots and
a library of motion primitives, the authors create a system to
automatically generate plans to satisfy the task. This work
is extended in [3] to enable the system of modular robots
to autonomously use structures found in the environment
to satisfy otherwise infeasible tasks. Allowing robots to
manipulate objects in the environment in order to use them to
satisfy a task expands the set of feasible tasks that robots can
satisfy. During execution it is possible for the environment
to change, or tasks to not be completed as expected. In these
cases, the system must be reactive to the environment in
order to ensure the task is satisfied according to the given
specification. Authors from [4] provide methods to satisfy
task and motion planning with the ability to recreate plans
on the fly in a computationally efficient manner for tasks
where the human or the environment may be adversarial.

Affordances are defined as the possibility of an action
on an object in the environment [5]. In robotics, and ma-
nipulation in particular, affordance is a critical factor to
allow robots to acquire new possibilities to manipulate novel
objects once its affordance information can be singled out.
In this work we assume that the affordances of all objects
are known. In other words, the different ways an object can
be used, actions it can take or the way it extends the robot’s
skills. There is extensive work in defining the affordances
of different objects for manipulation tasks [6], [7], [8]. The
work in [9], [10] used the affordance of objects to modify
a given task to replace missing or unreachable objects with
objects with a similar affordance so that the task can be
satisfied.

Our contribution is a system approach to Task and Motion
Planning (TAMP) that uses the affordances of the objects
in the environment to produce physically feasible plans to
perform the desired task. Given the affordances of objects
and a high-level specification (task, user-defined constraints,
etc...), we find the symbolic actions that generate a sequence
of motion primitives from the robot’s skill set that are used to
satisfy the task. Our goal is to find a solution that satisfies the
task dependent on object affordances and that is not specific
to individual objects and react if the environment changes. To
validate our framework, we implement low-level controllers
to execute our system on a physical robot and execute several
examples.

II. PROBLEM DEFINITION

A. Assumptions

Assumption 1: The library of motion primitives (skill set)
is given to the robot a priori
Assumption 2: All affordances and properties of the objects
are known
Assumption 3: The robot is able to detect a change in the
state of the environment

B. Robot Model

On the symbolic level, we model the robot as having a
skill set S. Each skill is a tuple (a, o, c, e) ∈ S. a is an action
mapped to a motion primitive in the continuous domain, e.g.
the action grip is mapped to a motion produced by the end-
effector gripper which closes its fingers. o ∈ O is the subset
of objects from O that are participating in this operation,
e.g. grip operates on one main object, and move moves the
first object to the location of second object. c is the set of
pre-conditions that must apply when wanting to perform the
action. For example, grip cannot be executed if the gripper
is already closed, or if it is not near the object it wants to
grip, or if the object cannot be carried (due to weight or size
constraints). We add an artificial pre-condition in the form
of a proposition man disable(object1, object2) so that we
can manually impose other solutions. This is done to steer
away from infeasible plans, and will be explained in detail
later. Finally, e is the set of effects of performing this type
of action. For the grip action, this means that the gripper is
now closed and is grasping the object.

Every skill in the robot skill set is also associated with
low-level controllers that are able to perform the action in the
physical-space - e.g. move employs a feedback linearization
controller in addition to waypoint generation to move the
mobile manipulator base and end-effector to a different loca-
tion (essentially solving the inverse kinematics). In addition



to the actual controls, we can use the skill in a “simulation
mode” to check if some proposed action is feasible, i.e. safe.

The robot we use has a differential drive mobile base with
state (x, y, θ) and two prismatic joints extending up z in the
ẑ axis, and in the robot’s ŷ axis, extending the reach by d. We
also assume in this work that the gripper’s orientation with
respect to the arm is fixed. To account for the change in the
robots workspace when it is grasping an object, we extend
the robot’s configuration space with states tx, ty, tz . These
states are the position of the “tooltip” of the object, which
represent the new “end effector” position. If the robot is
currently not grasping any object, then [tx, ty, tz] = [0, 0, 0].

C. Object Definition

Each object is defined as O = (πO, P,A) ∈ O, where
• πO is the name of the object
• (p, q) ∈ P is a property name p and its

value q. It includes both the physical property
of the convex hull of the object and its affor-
dance. For example the object ladle has, P =
{(length, 25cm), (width, 3cm), (height, 3cm),
(mass, 100g)}.

• (a, able,has,manipulation) ∈ A are the affordances
of this object, where a is the affordance name, e.g.
liquid, able is whether the object can manipulate that
affordance and has is whether the object also currently
has it in its possession. manipulation is a tuple in itself
that describes where is the location and orientation on
the body of the object (in object’s frame of reference)
we need to manipulate in order to obtain this affor-
dance, and the new end-effector (EE) position, again
in object’s reference frame.

On the symbolic level, we add a property of can carry to
each object that will depend on the mass and size of the
object and the gripper constraints. This is set as the initial
state of the system.

D. Specification

A specification is defined from both the user-defined ob-
jectives and constraints, and the auto-generated problem and
domain descriptions. The user can define a goal state, such
as “the bowl should have soup” and user-defined constraints
such as “do not use a cup (even if the affordance allows it)”
by setting the can carry proposition of the cup to False.

Fig. 1. Example 1 environment - the goal is for the robot to transfer the
soup from the pot to the bowl, while avoiding obstacles

Example 1: Consider the task of transferring liquid
from a pot to a bowl. The environment is shown in Fig.
1. The ladle is defined as (“Ladle”, P,A), with a property
set P = {(length, 25cm), (width, 3cm), height, 3cm),
(mass, 100g)}. The ladle has two relevant affordances for
our example which are both liquid. The difference is in the
position of grasp which also effects the end-effector pose. Let
obj pose and obj R be the location and the rotation matrix
along the object, w.r.t the object’s origin, where the robot
can perform an action. Affordance A =

• (liquid1, able = T, has = F, (obj pose =
[−12cm, 0, 0], obj R = I3, EE = [24cm, 0, 0]))

• (liquid2, able = T, has = F, (obj pose =
[0, 0, 0], obj R = I3, EE = [12cm, 0, 0]))

The bowl is defined as (“Bowl”, P,A), with a property set
P = {(length, 30cm), (width, 30cm), (height, 14cm),
(mass, 300g)} and affordance A =

• (liquid1, able = T, has = F, (obj pose =
[0, 0, 0], obj R = I3, EE = [0, 0, 0]))

The pot is defined as (“Pot”, P,A), with a property set P =
{(length, 40cm), (width, 40cm), (height, 25cm), (mass, 1Kg)}
and affordance A =

• (liquid1, able = T, has = T, (obj pose =
[0, 0, 0], obj R = I3, EE = [0, 0, 0]))

In this scenario, we assume that the maximum payload is
small enough that the pot cannot be picked up, but ladle can.
If the ladle is reachable, then the robot will pick up the ladle,
place it into the pot to fill it with liquid, then place the ladel
into the bowl.

E. Problem Statement

Given a high-level task (Sec. II-D), a set of object properties
and affordances (Sec. II-C) and their state in the environment,
and a set of robot skills and their associated post-conditions
(Sec. II-B), we automatically seek a plan to generate safe
controls to satisfy the specification in a potentially “dynamic”
environment, or return that it is infeasible.

III. METHODS

A. Overview

The visual understanding of the scene, the reasoning about
the affordance of the objects, and the transition between
raw sensor data to the symbolic conterparts are the so-called
“signal-to-symbol gap” and are not considered in this work.
The affordance and the effects of actions are assumed to
be known. The set of objects in the environment and their
properties are also given. In practice, this could come from
many papers dealing with perception of affordances [11],
[12]. Fig. 2 depicts the system approach of the high and low-
level planners, the inputs and the hardware. We will discuss
each of the building blocks in the following sections.



Fig. 2. System view of the affordance Task and Motion Planner

B. High-level planner

The high-level planner pipeline consists of three phases:
(1) generating the domain and problem description files
based on the task, the objects in the environment and their
affordances; (2) running available open-source PDDL solvers
to find optimal plans; (3) simulating feasibility for the entire
plan and adding constraints to the problem description in
case the plan is infeasible and re-iterate. We now describe
each section in detail:

1) Problem and Domain description: The description files
are automatically generated for PDDL version 2.1 with action
costs to enable optimal solution search (in the experiments
presented, each action has a value of 1, so the planner finds
a plan with the minimum number of actions).

Propositions assumes a value of True or False, based on
its arguments. There are 4 hard-coded propositions that deal
with the symbolic state of the environment:

• gripped(obj)
• at(obj, loc)
• can carry(obj)
• is robot carrying

which capture “is the robot gripping obj”, “is the robot
at obj’s (and more specifically loc) location”, “can the
robot carry obj” and “whether the robot is carrying any-
thing at the moment”, respectively. Another proposition
man disable(obj1, obj2) is added to support disabling of
actions and is checked in the precondition of the actions.

The robot’s skills are hard-coded as well. Our robot
manipulator (discussed in the next section) has 4 skills:

• gofromto(obj from, from loc, obj to, to loc)
• move(obj from, from loc, obj to, to loc)
• grip(obj, loc)
• ungrip(obj)

The difference between gofromto and move is to differen-
tiate between the mobile base moving by itself to when
it is also changing the location of some object, which
is important to keep track when simulating the actions
for the feasibility check. An example for the precondi-
tions of the action grip(obj, loc) are ¬gripped(obj) ∧
¬is robot carrying∧at(obj, loc)∧can carry(obj) while its
effects are gripped(obj) ∧ is robot carrying and total plan
cost increasing by 1 units.

Auto-generated actions fill the rest by looping through the
properties JSON file containing all the objects and extracting
the unique set of affordances and locations. Every action (e.g.

liquid) will have a do and cease actions which encapsulate
the action of taking from an object and transferring the
affordance to the self object, and the other way around,
respectively (e.g. do liquid, cease liquid). The preconditions
are that the receiving object is “able” that affordance, and
that the sending object “has” it.

The problem description file describes the objects in the
environment and the initial state - the pot has liquid, the ladle
and the bowl do not have liquid but are able to hold it. Also,
can carry(bowl) and can carry(pot) are undefined which
sets them as False on default and disables the trivial solution
of transporting the pot to the bowl or vice-versa. Here, we
also manually disable actions based on infeasible actions we
witness using the low-level planner as a feasibility check.
Although this may be too restrictive (in the sense that we
restrict an action for the entire plan, whereas perhaps given
a sequence of other performed actions the disabled action
could become feasible again), it at least prevents from a plan
that cannot be finish, to start executing. Perhaps a better way
to deal with this was to create a graph where the nodes are the
environment state, edges are actions and construct the tree
breadth-first while searching for an accepting node (goal),
but we decided to focus on the other parts of the work.

Finally, the target state is defined by the user,
has liquid(bowl)∧¬is robot carrying and the optimization
objective of minimizing the total cost.

2) PDDL Solver: There are plenty1 of available PDDL
solvers implementing different versions of PDDL standards.
We chose to use the singularity container of the submissions
to IPC20182 because it bundles many algorithms in a con-
venient interface where it can find the suitable algorithm to
try and find the best solutions. This is on the expense of
performance, however, our problems are sufficiently small,
≪ 1sec wall time. If there are several objects with similar
affordances it will choose the one with minimal number of
actions. In case of a tie, it will output one plan in random.

3) Feasibility check: As mentioned, we use the exact same
low-level algorithm (Sec. III-C) that finds the controls (path,
joint parameters) to perform each action, in a simulated
fashion where we keep track of the location and state as every
action completes. The low-level planner is probabilistically
complete due to the usage of sampling trajectories to find
feasible paths.

Note: as mentioned earlier, obtaining a valid plan does not
guarantee that executing this plan will necessarily produce
a feasible plan. Due to the non-determinism of the system,
some actions may render the rest of the problem infeasible.
For example, executing ungrip action and the ladle drops in
a way that cannot be gripped again. Or, if some adversarial
moved an item to outside of the robot’s reachable set.

4) Reactivity: This system approach to the TAMP is
reactive to some extent. First, every object has a symbol and
as such, the high- and low-level planners are invariant to the
actual location of the objects, and will adjust accordingly

1https://planning.wiki/ref/planners/atoz
2https://ipc2018-classical.bitbucket.io/



even if they move. A small caveat is that once a trajectory
to an object began executing, it is static, so it will not reach
a moving object. This can be relaxed in future work. If a
change is made to the state of the environment, e.g. someone
spilled the soup from the pot so now has liquid(pot) =
False, the system needs to recognize that and call the high-
level planner with the new state as initial conditions.

C. Low-level planner

When the high-level planner decides to take an action
such as move between two places, it still needs to find a
safe trajectory considering the robot and object combined
configuration and the current workspace state (obstacles).
The simpler motions, such as grasp, are implemented using
a position controller based on the properties of the main
manipulated object (e.g. width).

Because of the way we have defined our robot model
(outlined in II-B), the low-level planner implements a “drive
then extend” scheme that can be broken down into two main
steps: navigation and grasping.

D. Controller for Navigating Robot Base

Algorithm 1: Navigation Controller
Input : xcurr, xgoal, Env, Obj, EE pose
Output: w

1 F = FINDFREESPACE(Env,Obj)
2 reachable = False
// Check if current pose can reach

the target position
3 reachable, warm = GENERATEARMWP(xcurr,

EE pose, xgoal, Obj)
// If current pose cannot reach,

sample a new pose for the base
4 while not reachable do
5 xsample = SAMPLEPOSE(xcurr, F )
6 reachable, warm =

GENERATEARMWP(xsample, EE pose, xgoal,
Obj)

7 wbase = VISIBILITYROADMAP.PLANNING(xcurr,
xsample, Obj)

8 w = [wbase, warm]

Given the goal point the robot wants to reach, the robot
needs to move its base to a point such that the arm can reach
the goal point while avoiding obstacles. Alg. 1 outlines the
process for the robot to find this new base point and the
corresponding waypoints to reach it.

The free space that the robot can navigate through is an
alley around the objects, where Env is the outer circum-
ference of the free space, and Obj is the set of 3D object
meshes and their locations. The alley can be tuned such that
the robot is not too close to the objects, but close enough
that the arm does not need to overextend.

The robot first checks if its current position can reach the
goal point. If it can, it will reach from there. Otherwise,

it samples a new base point. The sampling is a Gaussian
distribution with the mean at its current pose to encourage
the robot to find a point closer to its current position and
limits “jumping” across the free space.

To determine whether or not the sampled point is valid, we
check if the arm can reach the goal point from the sampled
point. The details are outlined in Section III-E. If the arm
can reach, then we find a series of waypoints for the robot
base to navigate to by building a visibility roadmap. The
algorithm then outputs waypoints w for the full trajectory,
which includes waypoints for both the base and the arm.

E. Controller for Robot Arm

The goal for this controller is to find the required arm
height, zreach, and arm extension, dreach, such that the end
effector can reach the goal point from the sampled position.
We take advantage of the robot’s Cartesian motion by first
rotating the robot’s base such that the pose of the robot is
directly in line with the goal point, and then finding the
proper extension and lift motion for the robot to perform.

To find a collision-free trajectory for the arm to reach the
goal point, we create 3D object meshes for all the objects
in the scene as shown in Fig 3. To account for the volume
of the arm we bloat the objects by an appropriate factor. We
consider three scenarios: first, the gripper is not holding any
object and the objective is to reach for a object and grasp it;
second, retract the arm after grasping the object; and third,
the gripper is holding an object, in which case the objective
is to reach the goal point and release the object. For the latter
case, we consider the objects tip as the “new end effector”.

We sequentially find the required arm height and arm
extension by discretizing the arm’s motion in z direction
by taking steps of 1 cm. We start by setting the arm height
at the goal point’s height and check for the required arm
extension. If a collision is detected of end effector with any
of the mesh, we move the arm up by step size and repeats
the process until either we find a collision free dreach or the
arm can no longer move in z direction. When the gripper
is holding an object we check for collision of the “new end
effector” with any of the meshes in the scene while extending
the arm to reach goal point. For retraction we set zreach as
the total arm height and check if the arm can be retracted
without any collisions.

For example, say the robot is holding a ladle and the
objective is to put the ladle at the bottom of the pot. We
start by setting the arm height such that ladle’s tip (which
is now the new end effector, EE pose) matches the goal
point height (in this case, the bottom of the pot). If the
arm tries to reach the pot’s bottom by directly extending
we would register a collision with the pot’s mesh. Thus, we
keep on moving the arm by step size until the ladle’s tip
stops colliding with the pot’s mesh, which happens just at
the top of the pot. At this point, we store the corresponding
z of the arm and extend the arm such that arm is just
above the goal point in xy plane. We then lower the arm
in step sizes until reached the bottom of the pot. The arm
trajectory for this example would consist of two waypoints:



warm = [zreach1
, dreach; zreach2

, dreach] where zreach1

and zreach2 corresponds to the pot’s top and bottom respec-
tively.

Fig. 3. Real time scene modeled by creating 3D meshes of each object

IV. EXPERIMENTS

A. Hardware

We implement our planner on on the Stretch robot by Hello-
robot [13] (Fig. 4). The low-level planner results in position
commands sent to the robot in closed loop in a “drive and
extend” manner. This means that the differential base of
the robot will navigate and align to a goal position and
then attempt to manipulate objects using the three degree
of freedom manipulator. For our demonstrations, we assume
that the manipulator has two degrees of freedom. The arm
can raise or lower in the z-direction and extend outwards
in the robots y-direction (perpendicular to the direction of
forward motion). The gripper has the ability to rotate about
its axis similar to a wrist, but for our demonstrations we have
assumed that this degree of freedom is locked.

Fig. 4. Stretch robot by Hello-robot

During our executions we assume that the system has
knowledge of the state of the Stretch robot and other objects

in the environment. This is achieved using Optitrack, a
motion capture system. Each object is tracked in real-time
and information on the objects dimensions and weight are
given a-priori. The system provides the object’s context to
the robot to decide the state of the system and the appropriate
low-level controls. The Optitrack system is comprised of
22 cameras with a resolution of 1.3MP, a 3D accuracy of
±0.2mm, and a frame rate of 240 FPS.

Fig. 5. View of several Optitrack cameras in the workspace

Fig 6 shows a possible initial configuration of objects in
the physical demonstration. The Optitrack system is able
to determine the positions of all objects and using the
physical attributes create representations of the objects that
are used by the high and low level planners. This real-time
information allows for reactivity in our model.

Fig. 6.

B. Experiments

We demonstrate our proposed framework by executing
physical experiments of our example in three different sce-
narios 3:

1) The ladle is reachable and outside the pot
2) The ladle reachable and inside the pot
3) The ladle is unreachable, but a cup with the same

affordance is reachable (can carry liquid = True)
Demonstration 1: In the first demonstration the ladle is in

a position in the environment that is reachable by the robot in
the initial state. The high-level planner uses this information

3Video available https://youtu.be/IccXzYfV-ko



to automatically generate a plan to satisfy the task of moving
liquid from the pot to the bowl. The output is as follows:

1) gofromto idle loc1 ladle loc1
2) grip ladle loc1
3) move ladle loc1 pot loc1
4) do liquid ladle loc1 pot loc1
5) move ladle loc1 bowl loc1
6) cease liquid ladleloc1 bowl loc1
7) ungrip ladle

Where gofromto, grip, move, and ungrip are motion
primitives that the robot should take to complete the task
and do liquid and cease liquid are affordances of objects.
For this task the ladle contains two locations, loc1 and loc2,
which represent points that the robot can grip the ladle that
result in different affordances of the ladle. During execution
the robot follows this plan in sequence until the last final step
where, once completed, the task is satisfied. The robot first
completes gofromto from the idle state to the ladle in loc1.
Once in position the robot will grip the ladle in loc1 and
move to the pot in the environment. Using the affordance of
the ladle do liquid, the robot now contains the liquid in the
pot. The robot then moves the ladle to the bowl and, using
the affordance cease liquid, the ladle deposits the liquid into
the bowl. Finally, the robot ungrips the ladle and the task of
moving liquid from the pot to the bowl is complete.

Demonstration 2: In the second demonstration the ladle
begins inside of the pot. This means that liquid that needs
to be transferred from the pot to the bowl is in the ladle
at initialization. The high-level plan is similar to the plan
generated for demonstration 1 except after griping the ladle,
the robot moves directly to the bowl to deposit the liquid
and ungrip the ladle.

Demonstration 3: In the final demonstration the ladle is
not available for use in the environment. However, a cup is
present and it has the same affordance which allows it to
carry liquid. To satisfy the task of transferring liquid, the
high-level planner instructs the robot to use the cup instead
of the ladle. This shows a strength of our approach in that a
plan is able to be found using different objects with similar
affordances.

C. Failure Modes

During demonstrations most failures came from the robot
being unsuccessful in the “grip” motion primitive. In our
“drive and extend” approach, we assume that the robot
navigates and aligns to a point within a threshold. We use this
threshold to avoid overshoot and chatter caused by hardware
and control frequency constraints. Because of this, we are
not able to exactly reach the desired 2D point or alignment
required to grip the object and a failure occurs. In addition to
this, the Stretch robot does not perfectly rotate in place. This
means that during the aligning process, the robot translates
further then the desired goal point. This problem could be
alleviated with an omni-directional or holonomic robot that
would allow us to manipulate the position and orientation of
the robot directly.

V. CONCLUSION

We present a TAMP framework that uses the affordances
of objects in the environment to produce physically feasible
plans to perform the desired task. We automatically find
the symbolic actions that generate a sequence of motion
primitives from the robot’s skill set that are used to satisfy the
task. Depending on the task, the outputted plan may include
commands for the robot to use objects in the environment
based on their affordances, thus expanding the robot’s skill
set. We create the motion primitives by running low-level
controllers and validate our framework by executing three
examples on the Stretch robot.

Our planner is reactive to environment changes; if a
symbolic action from the high-level planner can no longer
be satisfied, the high-level planner generates a new sequence
of actions. The low-level planner can also react to envi-
ronmental changes between each symbolic action. However,
it is unable to react if a series of waypoints has already
been generated. Because the state of the robot and all of the
objects are fully known, it is easy to implement this aspect
of reactivity in the future.

In future work, we plan to add capabilities to plan with
actions that do not have a deterministic outcome. For exam-
ple, using a stick to push an object to make it reachable from
a different place - there are infinite number of displacement
values the robot can push and we need to know when to stop
for it to be reachable. In addition, we plan to add temporal
constraints, like “the ladle should hold the soup within n-
steps (otherwise the pot is taken away)”.

VI. CONTRIBUTIONS AND SCORES

In the paper and class presentation Guy worked on creating
the high-level planner, Himani and Amy worked on the
low-level planner, and David worked on the environment
abstraction for the experiments and code integration. We
believe that all four team members contributed equally and
we should each receive a 5 out of 5 for our contributions.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the
now,” in Workshops at the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, 2010.

[2] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “An end-to-end system
for accomplishing tasks with modular robots.,” in Robotics: Science
and systems, vol. 2, p. 7, 2016.

[3] T. Tosun, J. Daudelin, G. Jing, H. Kress-Gazit, M. Campbell, and
M. Yim, “Perception-informed autonomous environment augmentation
with modular robots,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6818–6824, IEEE, 2018.

[4] S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task
and motion planning under temporal logic specifications,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
pp. 12618–12624, IEEE, 2021.

[5] J. J. Gibson, “The theory of affordances. perceiving, acting and
knowing,” Eds. Robert Shaw and John Bransford, 1977.

[6] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater,
and J. Santos-Victor, “Affordances in psychology, neuroscience, and
robotics: A survey,” IEEE Transactions on Cognitive and Develop-
mental Systems, vol. 10, no. 1, pp. 4–25, 2016.

[7] T. E. Horton, A. Chakraborty, and R. S. Amant, “Affordances
for robots: a brief survey,” AVANT. Pismo Awangardy Filozoficzno-
Naukowej, vol. 2, pp. 70–84, 2012.



[8] H. Min, R. Luo, J. Zhu, S. Bi, et al., “Affordance research in
developmental robotics: A survey,” IEEE Transactions on Cognitive
and Developmental Systems, vol. 8, no. 4, pp. 237–255, 2016.

[9] I. Awaad, G. Kraetzschmar, and J. Hertzberg, “Finding ways to
get the job done: An affordance-based approach,” in Twenty-Fourth
International Conference on Automated Planning and Scheduling,
2014.

[10] I. Awaad, G. K. Kraetzschmar, and J. Hertzberg, “The role of
functional affordances in socializing robots,” International Journal of
Social Robotics, vol. 7, no. 4, pp. 421–438, 2015.

[11] Y. Xie, F. Zhou, and H. Soh, “Embedding symbolic temporal knowl-
edge into deep sequential models,” in 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 4267–4273, IEEE,
2021.

[12] S. Reich, M. J. Aein, and F. Wörgötter, “Context dependent action
affordances and their execution using an ontology of actions and
3d geometric reasoning.,” in VISIGRAPP (5: VISAPP), pp. 218–229,
2018.

[13] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich, “The
design of stretch: A compact, lightweight mobile manipulator for
indoor human environments,” CoRR, vol. abs/2109.10892, 2021.


