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Abstract— A novel algorithm to use line of sight (LOS)
measurements for relative position, attitude and angular rate
estimation for autonomous spacecraft navigation is developed.
Traditional relative attitude navigation is based on gyro mea-
surements from the spacecrafts in formation for estimating
angular rates. But it requires information exchange between
the two spacecrafts and continuous availability of gyro data.
The loss of gyro data can result in high propagation errors. The
approach presented here can determine relative angular velocity
in the event of gyro failures or communication delays. Previ-
ously, an algorithm for spacecraft angular rate estimation for
star tracker based attitude determination had been proposed.
In this paper, this algorithm is extended to estimate relative
angular rates from the LOS measurements without assuming
any on-board star tracker or gyros. An extended Kalman filter
(EKF) is used here to estimate the relative motion. The state
of the EKF consists of relative quaternion, angular velocity,
position and velocity. The dynamic model of the relative motion
is based on generalized Clohessy and Wiltshire equations. The
angular acceleration of the follower spacecraft is modeled by
Gaussian white noise. This is done for estimating relative
angular rates. Numerical simulations are carried out to analyze
the performance of this algorithm.

I. INTRODUCTION

Spacecraft formation flying is an important technology for

modern day space agencies, with application to areas like

stereographic imaging, synthetic apertures and autonomous

orbital rendezvous. They require that relative attitude and

position between spacecrafts is maintained. Autonomous

proximity operations are required for International space

station repair, refueling and servicing. In a leader follower

configuration, the spacecraft about which all the other space-

crafts are orbiting is refereed to as leader and the remaining

spacecrafts as followers. In the past decade, many methods to

obtain LOS vectors have been proposed. Demonstration of

Autonomous Rendezvous Technology (DART) and Orbital

Express made use of Advanced Video Guidance Sensor

(AVGS) to obtain line of sight measurements. The AVGS

computes and reports a 6-DOF-vector for the leader co-

ordinate system relative to the AVGS coordinate system.

This vector consists of range, azimuth and elevation of the

leader frame [1]. Many research studies also make use of

GPS (Global Positioning System)-like technology to obtain

relative attitude and position, but this limits the use to low

earth orbit operations only. Kim et al. discuss a vision based
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navigation (VISNAV) to obtain LOS vectors, which com-

prises of an optical sensor [2]. Several light emitting diodes,

called beacons, are fixed on the leader frame (spacecraft)

and an optical sensor on the follower frame (spacecraft).

This optical sensor works analogously to radar to determine

relative range and attitude.

Factors like reliability, accuracy, and cost of the sensor

determine its suitability for a specific space mission. We have

considered VISNAV algorithm as discussed in [2].The main

objective of this paper is to present an extended Kalman filter

(EKF) formulation for relative spacecraft navigation using

only LOS measurements. Generally, three axis gyros are used

on board for body angular rate information. Autonomous

proximity operations between spacecrafts then requires in-

formation exchange of their respective body angular rates. A

gyro failure or poor communication between the spacecrafts

could lead to the failure of entire mission. P. Singla et al. have

developed an efficient algorithm for estimation of spacecraft

body angular rates in the absence of gyro rate data for a

start tracker mission [3]. We have extended this algorithm to

obtain relative angular velocity between the spacecrafts. This

eliminates the need to know individual spacecraft’s angular

velocity.

This paper is organized as follows. First, a brief review

of dynamical model for relative translational motion is given

followed by quaternion based attitude kinematics model and

equations for relative rotational motion. Then the basic equa-

tions for VISNAV system are shown. Next, an algorithm for

estimating relative angular velocity using Kalman filtering

is discussed. Subsequently, an EKF formulation to estimate

relative attitude, relative position and velocity is developed.

Finally, numerical simulations are carried out to test the

proposed algorithm.

II. RELATIVE TRANSLATIONAL MOTION DYNAMICS

In this paper, relative motion of two spacecrafts in close

proximity is considered. Relative orbital dynamics equations

are written in the Local-vertical-Local-Horizontal (LVLH)

reference frame attached to the leader and the orthogonal

body frame fixed to the center of mass of the follower. X-axis

points radially outward of leader’s orbit, Y-direction perpen-

dicular to X along its direction of motion and Z completes the

right handed co-ordinate system. The relative orbit position

vector ρ is expressed as ρ = [x y z]T . The motion of the

follower with respect to the leader is described in the LVLH



frame by nonlinear Clohessy-Wiltshire equations [4]

ẍ− xθ̇2(1 +
2rc
p

)− 2θ̇(ẏ − yṙc
rc

) = wx (1a)

ÿ + 2θ̇(ẋ− xṙc
rc

)− yθ̇2(1− rc
p
) = wy (1b)

z̈ + zθ̇2
rc
p

= wz (1c)

where p is semilatus rectum, rc is orbit radius and θ̇ is

the true anomaly rate of the of the leader. wx, wy , and

wz are acceleration disturbances which are modeled as zero

mean Gaussian white-noise processes, with variances given

by σ2
x, σ2

y and σ2
z respectively. For circular orbit of the leader

relative equations of motion reduce to the simple form known

as the CW equations :

ẍ− 2nẏ − 3n2x = wx (2a)

ÿ + 2nẋ = wy (2b)

z̈ + n2z = wz (2c)

where n = θ̇ is the mean motion.

III. RELATIVE ROTATIONAL MOTION DYNAMICS

In this section, the attitude kinematics equation of motion

are briefly reviewed. A detailed derivation can be found in

[2], [5] and [6] . Spacecraft attitude can be represented by

various parameters like Euler angles, Rodrigues parameters,

modified Rodrigues parameters and quaternions. Quaternions

are ideal and are the most widely used parameterization for

attitude estimation. A quaternion q has a three-vector part,

[q1 q2 q3]T , and a scalar part q4, with

̺ ≡ [q1 q2 q3]
T = êsin(ϑ/2) (3a)

q4 = cos(ϑ/2) (3b)

where ê and ϑ are the axis of rotation and angle of rotation

respectively. The quaternion satisfies a unit norm constraint.

The attitude matrix expressed in quaternions is given by

A(q) = ΞT (q)ψ(q) (4)

with

Ξ(q) ≡
[

q4I(3×3) + [̺×]
−̺T

]

(5a)

ψ(q) ≡
[

q4I(3×3) − [̺×]
−̺T

]

(5b)

[̺×] ≡





0 −q3 q2
q3 0 −q1
−q2 q1 0



 (5c)

The quaternion kinematics is given as :

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (6)

where

Ω(ω) =

[

−[ω×] ω

−ω
T 0

]

(7)

A multiplicative error quaternion is defined as:

δq = q⊗ q̂ (8)

δ̺ = Ξ(q̂)q (9)

δq4 = q̂Tq ≈ 1 (10)

The quaternion multiplication (q′ ⊗ q) is defined as in [5].

IV. MEASUREMENT MODEL : VISION BASED

NAVIGATION SYSTEM

Photogrammetry technique involves measuring objects

from images or LOS measurements [2]. The attitude and

position of the leader from LOS observations can be deter-

mined by following collinearity equations [7]:

χi = −f A11(Xi − x) +A12(Yi − y) +A13(Zi − z)

A31(Xi − x) +A32(Yi − y) +A33(Zi − z)
(11a)

γi = −f A21(Xi − x) +A22(Yi − y) +A23(Zi − z)

A31(Xi − x) +A32(Yi − y) +A33(Zi − z)
(11b)

where i = 1,2,...,N are the total observations, (χi,γi) are

the image space observations for the ith LOS, (Xi, Yi, Zi)

are the known reference space locations (leader) of the ith

beacon, (x, y, z) are the unknown space location of the

sensor (follower) and f is the known focal length. Ajk are

the unknown coefficients of the attitude matrix A, associated

to the orientation from the reference plane (leader) to the

image plane (follower). The objective is to determine attitude

and relative position (x,y,z) given observations (χi, γi) and

(Xi, Yi, Zi). The sensor observations can be written in the

following orthogonal projection:

bi = Ari, i = 1, 2, ..., N (12)

where

bi ≡
1

√

f2 + χ2 + γ2





−χi

−γi
f



 (13a)

ri ≡
1

√

(Xi − x)2) + (Yi − y)2) + (Zi − z)2)





Xi − x
Yi − y
Zi − z





(13b)

In the presence of measurement noise, (12) can be written

as:

b̃i = Ari + υi (14)

where b̃i is the ith measurement, and υi is zero mean

Gaussian white noise with covariance matrix Ri.

V. RELATIVE ANGULAR VELOCITY ESTIMATION

In this section an algorithm to estimate the angular velocity

is developed using LOS measurements and Kalman filtering.

This algorithm was proposed by P. Singla et al. in [3]

to determine the spacecraft body angular rates from the

star tracker body measurements. We have extended this

algorithm to directly obtain the relative angular rates from



LOS observations of leader. This eliminates the need to know

angular velocity of the leader, which requires exchange of

information between the two spacecrafts, to determine the

relative attitude. Using (12) the velocity of the measurement

model is given by

dbi(t)

dt
=
dA(t)

dt
ri (15)

Using the fact that

dA(t)

dt
= −[ω×]A(t) (16)

we can write,

dbi(t)

dt
= −[ω×]bi(t) (17)

By considering the first order Taylor series expansion for ith

LOS vector at time tk and using (14) and (17),

Yi(k) =
1

∆t
[b̃i(k)− b̃i(k − 1)]

= [b̃i(k − 1)×]ω(k − 1) +wi(k) +O(∆t)
(18)

Where the effective measurement error wi(k) is a function

of ω(k − 1) and is given by:

wi(k) =
1

∆t
[υi(k)−υi(k−1)]+[ω(k−1)×]υi(k−1) (19)

Assuming a stationary noise process υi with isotropic mea-

surement errors (that is Ri is scalar times identity matrix)

and sampling interval is well within Nyquist’s limit, that

is, ‖ω‖∆t ≤ π, the measurement noise covariance matrix

can be approximated to 2
∆t2Ri. Accuracy of this algorithm

can be improved by considering second order Taylor series

expansion of LOS vector in (18). This will lead to truncation

errors of magnitude O(∆t2). Then:

Yi(k) =
1

2∆t
[4b̃i(k − 1)− 3b̃i(k − 2)− b̃i(k)]

= [b̃i(k − 1)×]ω(k − 2) +wi(k) +O(∆t2)
(20)

where

wi(k) =
1

2∆t
[4υi(k − 1)− 3υi(k − 2)− υi(k)]

+[b̃i(k − 2)×]υi(k)
(21)

Applying same assumptions on υi as before, the measure-

ment covariance matrix can be approximated to 13
2∆t2Ri.

A. Kalman filtering for relative angular velocity estimation

The derivation of the Kalman filter formulation can be

found in [8]. The state vector of the Kalman filter consists

of three components of relative angular velocity, that is, x =
[ω]. The angular acceleration of the spacecraft is modeled

by a first-order random process given by

τ = ω̇ = η (22)

where η is a Gaussian variable with the following properties:

E(η) = 0

E(ηηT ) = σ2I3×3

(23)

1) Propagation Equations: The state differential equation

is given by

ẋ = fx+ gw (24)

Equations (23) and (24) constitute the assumed dynamic

model for the propagation of x between two sets of LOS

measurements, that is,

w = η

f = 03×3

g = I3×3

(25)

A discrete-time propagation, as given in [5], can be used for

the covariance matrix in order to reduce the computational

load. The covariance prediction is then given by

P−

k+1 = φ′kP+
k φ′Tk + gQ′gT (26)

where, φ′k = I3×3 and Q′ = σ2I3×3∆t.

2) Update equations:

ω̂
+
k = ω̂

−

k +Kk(Yi(k)−Hkω̂
−

k ) (27)

where

Yi(k) =
1

2∆t
[4b̃i(k − 1)− 3b̃(k − 2)− b̃i(k)] (28a)

Hk = [b̃i(k − 2)×] (28b)

Kk = P−

KH
T
k (HkP

−

k H
T
k +R′

k)
− (28c)

R′

k =
13

2∆t2
Ri (28d)

Above update equations are given for the second order

expansion of ith LOS vector. Equation (28a) and (28b) can

be replaced by (18), if first order approach is to be used in

the filter.

VI. KALMAN FILTER FOR RELATIVE STATE ESTIMATION

In this section Kalman filtering for estimating relative atti-

tude, position and velocity is presented. The error in relative

attitude is represented by multiplicative error quaternion as

shown in (8). This error vector can be written as:

δq ≈
[

δα/2 1
]

(29)

Where δα is small angle-error correction. The state vector

of the Kalman filter consists of the error in relative attitude,

relative position ∆ρ and relative velocity ∆ρ̇ :

X =





δα
∆ρ

∆ρ̇



 (30)

The rate of change of error in the quaternion is given by :

δα̇ = −ω̂ × δα+ δω (31)

The state differential equation is given by :

Ẋ = FX+GW (32)



The F and G matrices are given by :

F =





−[ω̂×] 03×3 03×3

03×3 03×3 I3×3

03×3 F32 F33





F32 ≡





3n2 0 0
0 0 0
0 0 −n2





F33 ≡





0 2n 0
−2n 0 0
0 0 0





G =





I3×3 03×3

03×3 03×3

03×3 I3×3





(33)

The vector W = [ω̂T wx wy wz]
T with E (WWT ) =

S. As W contains ω̂, whose value varies with time, hence S

is a function of time:

Sk =









E(ω̂kω̂
T
k ) 0 0 0

01×3 σ2
x 0 0

01×3 0 σ2
y 0

01×3 0 0 σ2
z









(34)

A. Propagation equations

The state vector and error covariance matrix propagation

are given by :

X̂−

k+1 = F X̂+
k (35)

The relative position and velocity are then:

ρ̂
−

k+1 = ρ̂
+
k +∆ρ̂

+
k+1 (36a)

˙̂ρ−

k+1 = ˙̂ρ+
k +∆˙̂ρ+

k+1 (36b)

(36c)

The quaternion propagation is given by:

q̂−

k+1 = Θ(ω̂+
k )q̂

+
k (37)

with

Θ(ω̂+
k ) =

[

ζ+k I3×3 − [Ψ̂+
k ×] Ψ̂+

k

−Ψ̂+T
k ζ+k

]

ζ+k = cos
(1

2

∥

∥(ω̂+
k )

∥

∥∆t
)

Ψ̂+
k =

sin
(

1
2

∥

∥(ω̂+
k )

∥

∥∆t
)

ω+
k

∥

∥ω̂
+
k

∥

∥

(38)

The error covariance matrix is propagated as:

P−

k+1 = φkP
+
k φk +GQkG

T (39)

Where φk and Qk are obtained by Van Loan method [9], a

numerical method for fixed parameter systems, which include

a constant sampling interval time, ∆t, time invariant state, F

and G, and covariance matrix Sk.

B. Update equations

The Kalman gain Kk at time tk is given by

Kk = P−

k H
T
k (X̂

−

k )[Hk(X̂
−

k )P−

k H
T
k (X̂

−

k ) + Sk]
− (40)

where the sensitivity matrix is given by:

Hk(X̂
−

k ) =











[A(q̂−

k )r̂1×]
∂b̂−

1

∂ρ̂−

k

03×3

...
...

...

[A(q̂−

k )r̂N×]
∂b̂−

N

∂ρ̂−

k

03×3











(41)

Where r̂−i is given by by (13) and evaluated at ρ̂
−

and the

partial matrix

∂b̂−

i

∂ρ̂−
=

A(q̂−)

[(Xi − x)2 + (Yi − y)2 + (Zi − z)2]3/2
∂r̂−i
∂ρ̂−

with
∂r̂−

i

∂ρ̂−
given by (42).

The state and covariance update are then given by :

P+
k = [I3×3 −KkHk(X̂

−

k )]P
−

k (43a)

X̂+
k = Kk[ỹk − hk(q̂

−

k )] (43b)

where

hk(q̂
−

k ) =











A(q̂−

k )r̂1
A(q̂−

k )r̂2
...

[A(q̂−

k )r̂N











(44a)

ỹk =











b̃1(k)

b̃2(k)
...

b̃N (k)











(44b)

The relative position and velocity updates are:

ρ̂
+
k = ρ̂

−

k +∆ρ̂
+
k (45a)

˙̂ρ+
k = ˙̂ρ−

k +∆˙̂ρ+
k (45b)

VII. SIMULATIONS

Fig. 1 shows a flowchart of the proposed algorithm for

estimating relative attitude and position. Numerical simula-

tions were performed to test the performance of the EKF

for estimating relative attitude, angular velocity, position and

translational velocity. For the leader, a circular orbit with

orbital radius of 7,078,000 m is considered. A bounded

relative orbit is used. The simulation time for the relative

motion of both spacecrafts is 90 minutes and the sampling

interval is 0.4 s. The initial quaternion (in rad) and angular

velocity (in rad/s) for the relative attitude motion is given

by:

q0 = [
√
2/2 0 0

√
2/2]T (46a)

ω0 = [−.002 .0011 .0022]T (46b)

The initial condition for the vector X in appropriate SI units

(rad, m and m/s) is:

X = [qT
0 400 0 0 0 − .6361 0]T (47)



∂r̂−i
∂ρ̂−

=





−[(Yi − ŷ)2 + (Zi − ẑ)2] (Xi − x̂)(Yi − ŷ) (Xi − x̂)(Zi − ẑ)
(Xi − x̂)(Yi − ŷ) −[(Xi − x̂)2 + (Zi − ẑ)2] (Yi − ŷ)(Zi − ẑ)
(Xi − x̂)(Zi − ẑ) (Yi − ŷ)(Zi − ẑ) −[(Xi − x̂)2 + (Yi − ŷ)2]



 (42)

Three beacons are assumed to exist on the leader spacecraft:

X1 = 1m Y1 = .01m Z1 = .01m (48a)

X2 = .01m Y2 = .5m Z2 = .86m (48b)

X3 = .01m Y3 = −.5m Z3 = .86m (48c)

Measurement updates in the filter are only used when

the beacons are within the field of view of the sensor.

Measurement model is simulated with a standard deviation

of .0003 deg. Initialization of EKF is carried out by using

a nonlinear least squares routine from the synthetic mea-

surements. This gives initial relative angular velocity with

an error of 2 deg/hr for each axis. The initial errors in

relative position and velocity for each axis are 1 m and

.01 m/s respectively. The initial covariance sub matrix for

relative attitude, angular velocity, position and velocity is

taken to be a diagonal matrix with equal elements. Two sets

of simulations are carried out for the same initial conditions

of relative motion. Test Case 1 is based on the second order

approach for estimating relative angular velocity while Test

Case 2 uses first order approach to estimate relative angular

velocity. Fig. 2, Fig. 4, Fig. 6 and Fig. 7 are the plots obtained

for Test Case 1.

Fig. 2 shows the relative position errors with respective

3σ bounds obtained from the EKF covariance matrix. The

relative position is known within .02 m for each axis and

error converges to zero in 15 s. The relative velocity errors

remain below .01 m/s as shown in Fig. 3 and error achieves

convergence in approximately 6 s. The relative angular

velocity errors are within .001 rad/s as shown in Fig. 4.

The relative attitude error remains well within .2 deg and

estimate errors for attitude are larger than actual error as can

be seen from 3σ bounds in Fig.6. All errors remain within 3σ
bounds indicating that EKF is working properly. Fig. 3 and

Fig. 5 correspond to Test Case 2. Relative errors in position

and velocity are increased while still remaining within 3σ
bounds. Convergence time for errors also increase to 54 s

for relative position and to 35 s for relative velocity.

It can therefore be concluded that using second order

approach for estimating relative angular velocity gives more

accurate results as compared to the first order approach. The

possible reason for this is the use of two past measurements

along with the measurement at present time in the second

order approach and also a decrease in the truncation error.

Apart from this, the accuracy of the Kalman filter depends

upon the accuracy of the dynamic model and tuning of

process noise matrix. This means that between two sets of

measurements, accumulation of model error can take place

in the estimates. Estimates also depends on the number of

beacons on the leader and their spread, so as to ensure

minimum number of beacons in the field of view of VISNAV

sensor. Also, CW equations can only be applied when the

Relative State

Estimation

Initialization

X0 =
[

q̂0 δρ̂0 δ ˙̂ρ0

]T

Gain Computation

Kk = P−

k H
T
k [HkP

−

k H
T
k + Sk]

−

Update
P+
k = [I3×3 −KkHk(X̂

−

k )]P
−

k

X̂+
k = Kk[ỹk − hk(q̂

−

k )]

ρ̂
+
k = ρ̂

−

k +∆ρ̂
+
k

˙̂ρ+
k = ˙̂ρ−

k +∆˙̂ρ+
k

q̂+
k = q̂−

k + (1/2)Ξ(q̂−

k )δα̂
+
k

Propagation
X̂−

k+1 = F X̂+
k

ρ̂
−

k+1 = ρ̂
+
k +∆ρ̂

+
k+1

˙̂ρ−

k+1 = ˙̂ρ+
k +∆˙̂ρ+

k+1

q̂−

k+1 = Θ(ω̂+
k )q̂

+
k

P−

k+1 = φkP
+
k φk +GQkG

T

Relative Angular

Velocity Estimation

Initialize and Update
X0 = [ω0]

ω̂
+
k = ω̂

−

k +Kk(Yi(k)−Hkω̂
−

k )

Gain Computation
Yi(k) =

1

2∆t
[4b̃i(k − 1)

− 3b̃(k − 2)− b̃i(k)]

Hk = [b̃i(k − 2)×]

Kk = P−

KH
T
k (HkP

−

k H
T
k +R′

k)
−

Measurements

ỹk =











b̃1(k)

b̃2(k)
...

b̃N (k)











Fig. 1: Flow Chart of the Proposed Algorithm

distance between the leader and follower is under 1 Km.

VIII. CONCLUSION

An algorithm for relative spacecraft navigation is de-

veloped to estimate relative state using only LOS vectors.

Extended Kalman filter is designed for estimating relative

angular velocity, attitude, position and velocity. Relative

angular velocity can be estimated independent of attitude and

gyro measurements from the spacecrafts. A combined EKF

is then designed to estimate relative position, velocity and

attitude. In the future work, gravitational perturbations, solar

pressure and higher order nonlinear effects can be included

in the dynamic model of Kalman filter. A combination of

generalized Clohessy and Wiltshire equations and Gauss

variational equations can be used for this purpose. In this

paper relative motion of only two spacecrafts is considered.

Numerical simulations involving extended leader follower

network can be carried on the similar lines.



Fig. 2: Relative position errors and 3σ bounds for Test Case 1 Fig. 3: Relative position errors and 3σ bounds for Test Case 2

Fig. 4: Relative velocity errors and 3σ bounds for Test Case 1 Fig. 5: Relative velocity errors and 3σ bounds for Test Case 2

Fig. 6: Relative attitude errors and 3σ bounds for Test Case 1 Fig. 7: Relative angular velocity errors and 3σ bounds for Test Case 1
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