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Abstract— A novel algorithm to use line of sight (LOS)
measurements for relative position, attitude and angular rate
estimation for autonomous spacecraft navigation is developed.
Traditional relative attitude navigation is based on gyro mea-
surements from the spacecrafts in formation for estimating
angular rates. But it requires information exchange between
the two spacecrafts and continuous availability of gyro data.
The loss of gyro data can result in high propagation errors. The
approach presented here can determine relative angular velocity
in the event of gyro failures or communication delays. Previ-
ously, an algorithm for spacecraft angular rate estimation for
star tracker based attitude determination had been proposed.
In this paper, this algorithm is extended to estimate relative
angular rates from the LOS measurements without assuming
any on-board star tracker or gyros. An extended Kalman filter
(EKF) is used here to estimate the relative motion. The state
of the EKF consists of relative quaternion, angular velocity,
position and velocity. The dynamic model of the relative motion
is based on generalized Clohessy and Wiltshire equations. The
angular acceleration of the follower spacecraft is modeled by
Gaussian white noise. This is done for estimating relative
angular rates. Numerical simulations are carried out to analyze
the performance of this algorithm.

I. INTRODUCTION

Spacecraft formation flying is an important technology for
modern day space agencies, with application to areas like
stereographic imaging, synthetic apertures and autonomous
orbital rendezvous. They require that relative attitude and
position between spacecrafts is maintained. Autonomous
proximity operations are required for International space
station repair, refueling and servicing. In a leader follower
configuration, the spacecraft about which all the other space-
crafts are orbiting is refereed to as leader and the remaining
spacecrafts as followers. In the past decade, many methods to
obtain LOS vectors have been proposed. Demonstration of
Autonomous Rendezvous Technology (DART) and Orbital
Express made use of Advanced Video Guidance Sensor
(AVGS) to obtain line of sight measurements. The AVGS
computes and reports a 6-DOF-vector for the leader co-
ordinate system relative to the AVGS coordinate system.
This vector consists of range, azimuth and elevation of the
leader frame [1]. Many research studies also make use of
GPS (Global Positioning System)-like technology to obtain
relative attitude and position, but this limits the use to low
earth orbit operations only. Kim et al. discuss a vision based
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navigation (VISNAV) to obtain LOS vectors, which com-
prises of an optical sensor [2]. Several light emitting diodes,
called beacons, are fixed on the leader frame (spacecraft)
and an optical sensor on the follower frame (spacecraft).
This optical sensor works analogously to radar to determine
relative range and attitude.

Factors like reliability, accuracy, and cost of the sensor
determine its suitability for a specific space mission. We have
considered VISNAV algorithm as discussed in [2].The main
objective of this paper is to present an extended Kalman filter
(EKF) formulation for relative spacecraft navigation using
only LOS measurements. Generally, three axis gyros are used
on board for body angular rate information. Autonomous
proximity operations between spacecrafts then requires in-
formation exchange of their respective body angular rates. A
gyro failure or poor communication between the spacecrafts
could lead to the failure of entire mission. P. Singla et al. have
developed an efficient algorithm for estimation of spacecraft
body angular rates in the absence of gyro rate data for a
start tracker mission [3]. We have extended this algorithm to
obtain relative angular velocity between the spacecrafts. This
eliminates the need to know individual spacecraft’s angular
velocity.

This paper is organized as follows. First, a brief review
of dynamical model for relative translational motion is given
followed by quaternion based attitude kinematics model and
equations for relative rotational motion. Then the basic equa-
tions for VISNAV system are shown. Next, an algorithm for
estimating relative angular velocity using Kalman filtering
is discussed. Subsequently, an EKF formulation to estimate
relative attitude, relative position and velocity is developed.
Finally, numerical simulations are carried out to test the
proposed algorithm.

II. RELATIVE TRANSLATIONAL MOTION DYNAMICS

In this paper, relative motion of two spacecrafts in close
proximity is considered. Relative orbital dynamics equations
are written in the Local-vertical-Local-Horizontal (LVLH)
reference frame attached to the leader and the orthogonal
body frame fixed to the center of mass of the follower. X-axis
points radially outward of leader’s orbit, Y-direction perpen-
dicular to X along its direction of motion and Z completes the
right handed co-ordinate system. The relative orbit position
vector 𝝆 is expressed as 𝝆 = [x y z]𝑇 . The motion of the
follower with respect to the leader is described in the LVLH
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frame by nonlinear Clohessy-Wiltshire equations [4]

�̈�− 𝑥�̇�2(1 +
2𝑟𝑐
𝑝

)− 2𝜃(�̇� − 𝑦𝑟𝑐
𝑟𝑐

) = 𝑤𝑥 (1a)

𝑦 + 2𝜃(�̇�− 𝑥𝑟𝑐
𝑟𝑐

)− 𝑦𝜃2(1− 𝑟𝑐
𝑝
) = 𝑤𝑦 (1b)

𝑧 + 𝑧𝜃2
𝑟𝑐
𝑝

= 𝑤𝑧 (1c)

where p is semilatus rectum, 𝑟𝑐 is orbit radius and �̇� is
the true anomaly rate of the of the leader. 𝑤𝑥, 𝑤𝑦 , and
𝑤𝑧 are acceleration disturbances which are modeled as zero
mean Gaussian white-noise processes, with variances given
by 𝜎2

𝑥, 𝜎2
𝑦 and 𝜎2

𝑧 respectively. For circular orbit of the leader
relative equations of motion reduce to the simple form known
as the CW equations :

�̈�− 2𝑛�̇� − 3𝑛2𝑥 = 𝑤𝑥 (2a)

𝑦 + 2𝑛�̇� = 𝑤𝑦 (2b)

𝑧 + 𝑛2𝑧 = 𝑤𝑧 (2c)

where n = 𝜃 is the mean motion.

III. RELATIVE ROTATIONAL MOTION DYNAMICS

In this section, the attitude kinematics equation of motion
are briefly reviewed. A detailed derivation can be found in
[2], [5] and [6] . Spacecraft attitude can be represented by
various parameters like Euler angles, Rodrigues parameters,
modified Rodrigues parameters and quaternions. Quaternions
are ideal and are the most widely used parameterization for
attitude estimation. A quaternion q has a three-vector part,
[𝑞1 𝑞2 𝑞3]𝑇 , and a scalar part 𝑞4, with

𝝔 ≡ [𝑞1 𝑞2 𝑞3]
𝑇 = ê𝑠𝑖𝑛(𝜗/2) (3a)

𝑞4 = 𝑐𝑜𝑠(𝜗/2) (3b)

where ê and 𝜗 are the axis of rotation and angle of rotation
respectively. The quaternion satisfies a unit norm constraint.
The attitude matrix expressed in quaternions is given by

𝐴(q) = Ξ𝑇 (q)𝜓(q) (4)

with

Ξ(q) ≡
[
𝑞4𝐼(3×3) + [𝜚×]

−𝜚𝑇

]
(5a)

𝜓(𝑞) ≡
[
𝑞4𝐼(3×3) − [𝜚×]

−𝜚𝑇

]
(5b)

[𝝔×] ≡
⎡
⎣ 0 −𝑞3 𝑞2

𝑞3 0 −𝑞1
−𝑞2 𝑞1 0

⎤
⎦ (5c)

The quaternion kinematics is given as :

q̇ =
1

2
Ξ(q)𝝎 =

1

2
Ω(𝝎)q (6)

where

Ω(𝝎) =

[−[𝝎×] 𝝎
−𝝎𝑇 0

]
(7)

A multiplicative error quaternion is defined as:

𝛿q = q⊗ q̂ (8)

𝛿𝝔 = Ξ(q̂)q (9)

𝛿𝑞4 = q̂𝑇q ≈ 1 (10)

The quaternion multiplication (q′ ⊗ q) is defined as in [5].

IV. MEASUREMENT MODEL : VISION BASED

NAVIGATION SYSTEM

Photogrammetry technique involves measuring objects
from images or LOS measurements [2]. The attitude and
position of the leader from LOS observations can be deter-
mined by following collinearity equations [7]:

𝜒𝑖 = −𝑓
𝐴11(𝑋𝑖 − 𝑥) +𝐴12(𝑌𝑖 − 𝑦) +𝐴13(𝑍𝑖 − 𝑧)

𝐴31(𝑋𝑖 − 𝑥) +𝐴32(𝑌𝑖 − 𝑦) +𝐴33(𝑍𝑖 − 𝑧)
(11a)

𝛾𝑖 = −𝑓
𝐴21(𝑋𝑖 − 𝑥) +𝐴22(𝑌𝑖 − 𝑦) +𝐴23(𝑍𝑖 − 𝑧)

𝐴31(𝑋𝑖 − 𝑥) +𝐴32(𝑌𝑖 − 𝑦) +𝐴33(𝑍𝑖 − 𝑧)
(11b)

where i = 1,2,...,N are the total observations, (𝜒𝑖,𝛾𝑖) are
the image space observations for the i𝑡ℎ LOS, (X𝑖, Y𝑖, Z𝑖)
are the known reference space locations (leader) of the i𝑡ℎ

beacon, (x, y, z) are the unknown space location of the
sensor (follower) and f is the known focal length. A𝑗𝑘 are
the unknown coefficients of the attitude matrix A, associated
to the orientation from the reference plane (leader) to the
image plane (follower). The objective is to determine attitude
and relative position (x,y,z) given observations (𝜒𝑖, 𝛾𝑖) and
(X𝑖, Y𝑖, Z𝑖). The sensor observations can be written in the
following orthogonal projection:

bi = 𝐴ri, 𝑖 = 1, 2, ..., 𝑁 (12)

where

bi ≡ 1√
𝑓2 + 𝜒2 + 𝛾2

⎡
⎣−𝜒𝑖

−𝛾𝑖
𝑓

⎤
⎦ (13a)

ri ≡ 1√
(𝑋𝑖 − 𝑥)2) + (𝑌𝑖 − 𝑦)2) + (𝑍𝑖 − 𝑧)2)

⎡
⎣𝑋𝑖 − 𝑥
𝑌𝑖 − 𝑦
𝑍𝑖 − 𝑧

⎤
⎦

(13b)

In the presence of measurement noise, (12) can be written
as:

b̃𝑖 = 𝐴r𝑖 + 𝝊𝑖 (14)

where b̃𝑖 is the i𝑡ℎ measurement, and 𝝊𝑖 is zero mean
Gaussian white noise with covariance matrix R𝑖.

V. RELATIVE ANGULAR VELOCITY ESTIMATION

In this section an algorithm to estimate the angular velocity
is developed using LOS measurements and Kalman filtering.
This algorithm was proposed by P. Singla et al. in [3]
to determine the spacecraft body angular rates from the
star tracker body measurements. We have extended this
algorithm to directly obtain the relative angular rates from
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LOS observations of leader. This eliminates the need to know
angular velocity of the leader, which requires exchange of
information between the two spacecrafts, to determine the
relative attitude. Using (12) the velocity of the measurement
model is given by

𝑑b𝑖(𝑡)

𝑑𝑡
=

𝑑A(t)

𝑑𝑡
r𝑖 (15)

Using the fact that

𝑑𝐴(𝑡)

𝑑𝑡
= −[𝝎×]𝐴(𝑡) (16)

we can write,

𝑑b𝑖(𝑡)

𝑑𝑡
= −[𝝎×]b𝑖(𝑡) (17)

By considering the first order Taylor series expansion for 𝑖𝑡ℎ

LOS vector at time 𝑡𝑘 and using (14) and (17),

Y𝑖(𝑘) =
1

Δ𝑡
[b̃𝑖(𝑘)− b̃𝑖(𝑘 − 1)]

= [b̃𝑖(𝑘 − 1)×]𝝎(𝑘 − 1) +w𝑖(𝑘) +𝑂(Δ𝑡)
(18)

Where the effective measurement error w𝑖(𝑘) is a function
of 𝝎(𝑘 − 1) and is given by:

w𝑖(𝑘) =
1

Δ𝑡
[𝝊𝑖(𝑘)−𝝊𝑖(𝑘−1)]+[𝝎(𝑘−1)×]𝝊𝑖(𝑘−1) (19)

Assuming a stationary noise process 𝝊𝑖 with isotropic mea-
surement errors (that is R𝑖 is scalar times identity matrix)
and sampling interval is well within Nyquist’s limit, that
is, ∥𝝎∥Δ𝑡 ≤ 𝜋, the measurement noise covariance matrix
can be approximated to 2

Δ𝑡2R𝑖. Accuracy of this algorithm
can be improved by considering second order Taylor series
expansion of LOS vector in (18). This will lead to truncation
errors of magnitude O(Δ𝑡2). Then:

Y𝑖(𝑘) =
1

2Δ𝑡
[4b̃𝑖(𝑘 − 1)− 3b̃𝑖(𝑘 − 2)− b̃𝑖(𝑘)]

= [b̃𝑖(𝑘 − 1)×]𝝎(𝑘 − 2) +w𝑖(𝑘) +𝑂(Δ𝑡2)
(20)

where

w𝑖(𝑘) =
1

2Δ𝑡
[4𝝊𝑖(𝑘 − 1)− 3𝝊𝑖(𝑘 − 2)− 𝝊𝑖(𝑘)]

+[b̃𝑖(𝑘 − 2)×]𝝊𝑖(𝑘)
(21)

Applying same assumptions on 𝝊𝑖 as before, the measure-
ment covariance matrix can be approximated to 13

2Δ𝑡2R𝑖.

A. Kalman filtering for relative angular velocity estimation

The derivation of the Kalman filter formulation can be
found in [8]. The state vector of the Kalman filter consists
of three components of relative angular velocity, that is, x =
[𝝎]. The angular acceleration of the spacecraft is modeled
by a first-order random process given by

𝝉 = �̇� = 𝜼 (22)

where 𝜼 is a Gaussian variable with the following properties:

𝐸(𝜼) = 0

𝐸(𝜼𝜼𝑇 ) = 𝜎2𝐼3×3

(23)

1) Propagation Equations: The state differential equation
is given by

ẋ = 𝑓x+ 𝑔w (24)

Equations (23) and (24) constitute the assumed dynamic
model for the propagation of x between two sets of LOS
measurements, that is,

w = 𝜼

𝑓 = 03×3

𝑔 = 𝐼3×3

(25)

A discrete-time propagation, as given in [5], can be used for
the covariance matrix in order to reduce the computational
load. The covariance prediction is then given by

𝑃−
𝑘+1 = 𝜙′𝑘𝑃+

𝑘 𝜙′𝑇𝑘 + 𝑔𝑄′𝑔𝑇 (26)

where, 𝜙′𝑘 = 𝐼3×3 and 𝑄′ = 𝜎2𝐼3×3Δ𝑡.

2) Update equations:

�̂�+
𝑘 = �̂�−

𝑘 +𝐾𝑘(Y𝑖(𝑘)−𝐻𝑘�̂�
−
𝑘 ) (27)

where

Yi(𝑘) =
1

2Δ𝑡
[4b̃𝑖(𝑘 − 1)− 3b̃(𝑘 − 2)− b̃𝑖(𝑘)] (28a)

𝐻𝑘 = [b̃𝑖(𝑘 − 2)×] (28b)

𝐾𝑘 = 𝑃−
𝐾𝐻𝑇

𝑘 (𝐻𝑘𝑃
−
𝑘 𝐻𝑇

𝑘 +𝑅′
𝑘)

− (28c)

𝑅′
𝑘 =

13

2Δ𝑡2
R𝑖 (28d)

Above update equations are given for the second order
expansion of 𝑖𝑡ℎ LOS vector. Equation (28a) and (28b) can
be replaced by (18), if first order approach is to be used in
the filter.

VI. KALMAN FILTER FOR RELATIVE STATE ESTIMATION

In this section Kalman filtering for estimating relative atti-
tude, position and velocity is presented. The error in relative
attitude is represented by multiplicative error quaternion as
shown in (8). This error vector can be written as:

𝛿q ≈ [
𝛿𝜶/2 1

]
(29)

Where 𝛿𝜶 is small angle-error correction. The state vector
of the Kalman filter consists of the error in relative attitude,
relative position Δ𝝆 and relative velocity Δ�̇� :

X =

⎡
⎣𝛿𝜶Δ𝝆
Δ�̇�

⎤
⎦ (30)

The rate of change of error in the quaternion is given by :

𝛿�̇� = −�̂� × 𝛿𝜶+ 𝛿𝝎 (31)

The state differential equation is given by :

Ẋ = 𝐹X+𝐺W (32)
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The F and G matrices are given by :

𝐹 =

⎡
⎣−[�̂�×] 03×3 03×3

03×3 03×3 𝐼3×3

03×3 𝐹32 𝐹33

⎤
⎦

𝐹32 ≡
⎡
⎣3𝑛

2 0 0
0 0 0
0 0 −𝑛2

⎤
⎦

𝐹33 ≡
⎡
⎣ 0 2𝑛 0
−2𝑛 0 0
0 0 0

⎤
⎦

𝐺 =

⎡
⎣𝐼3×3 03×3

03×3 03×3

03×3 𝐼3×3

⎤
⎦

(33)

The vector W = [�̂�𝑇 𝑤𝑥 𝑤𝑦 𝑤𝑧]
𝑇 with E (WW𝑇 ) =

S. As W contains �̂�, whose value varies with time, hence S
is a function of time:

Sk =

⎡
⎢⎢⎣
𝐸(�̂�𝑘�̂�

𝑇
𝑘 ) 0 0 0

01×3 𝜎2
𝑥 0 0

01×3 0 𝜎2
𝑦 0

01×3 0 0 𝜎2
𝑧

⎤
⎥⎥⎦ (34)

A. Propagation equations

The state vector and error covariance matrix propagation
are given by :

X̂−
𝑘+1 = 𝐹 X̂+

𝑘 (35)

The relative position and velocity are then:

�̂�−
𝑘+1 = �̂�+

𝑘 +Δ�̂�+
𝑘+1 (36a)

˙̂𝝆−
𝑘+1 = ˙̂𝝆+

𝑘 +Δ˙̂𝝆+
𝑘+1 (36b)

(36c)

The quaternion propagation is given by:

q̂−
𝑘+1 = Θ(�̂�+

𝑘 )q̂
+
𝑘 (37)

with

Θ(�̂�+
𝑘 ) =

[
𝜁+𝑘 𝐼3×3 − [Ψ̂+

𝑘 ×] Ψ̂+
𝑘

−Ψ̂+𝑇
𝑘 𝜁+𝑘

]

𝜁+𝑘 = 𝑐𝑜𝑠
(1
2

∥∥(�̂�+
𝑘 )

∥∥Δ𝑡
)

Ψ̂+
𝑘 =

𝑠𝑖𝑛
(
1
2

∥∥(�̂�+
𝑘 )

∥∥Δ𝑡
)
𝜔+
𝑘∥∥�̂�+

𝑘

∥∥

(38)

The error covariance matrix is propagated as:

𝑃−
𝑘+1 = 𝜙𝑘𝑃

+
𝑘 𝜙𝑘 +𝐺𝑄𝑘𝐺

𝑇 (39)

Where 𝜙𝑘 and 𝑄𝑘 are obtained by Van Loan method [9], a
numerical method for fixed parameter systems, which include
a constant sampling interval time, Δ𝑡, time invariant state, F
and G, and covariance matrix 𝑆𝑘.

B. Update equations

The Kalman gain 𝐾𝑘 at time 𝑡𝑘 is given by

𝐾𝑘 = 𝑃−
𝑘 𝐻𝑇

𝑘 (�̂�
−
𝑘 )[𝐻𝑘(�̂�

−
𝑘 )𝑃−

𝑘 𝐻𝑇
𝑘 (�̂�

−
𝑘 ) + 𝑆𝑘]

− (40)

where the sensitivity matrix is given by:

𝐻𝑘(�̂�
−
𝑘 ) =

⎡
⎢⎢⎢⎣
[𝐴(q̂−

𝑘 )r̂1×]
∂b̂−

1

∂𝜌−
𝑘

03×3

...
...

...

[𝐴(q̂−
𝑘 )r̂𝑁×]

∂b̂−
𝑁

∂𝜌−
𝑘

03×3

⎤
⎥⎥⎥⎦ (41)

Where r̂−𝑖 is given by by (13) and evaluated at �̂�− and the
partial matrix

∂b̂−
𝑖

∂𝜌−
=

𝐴(q̂−)
[(𝑋𝑖 − 𝑥)2 + (𝑌𝑖 − 𝑦)2 + (𝑍𝑖 − 𝑧)2]3/2

∂r̂−𝑖
∂𝜌−

with ∂r̂−𝑖
∂𝜌− given by (42).

The state and covariance update are then given by :

𝑃+
𝑘 = [𝐼3×3 −𝐾𝑘𝐻𝑘(X̂

−
𝑘 )]𝑃

−
𝑘 (43a)

X̂+
𝑘 = 𝐾𝑘[𝑦𝑘 − ℎ𝑘(q̂

−
𝑘 )] (43b)

where

ℎ𝑘(q̂
−
𝑘 ) =

⎡
⎢⎢⎢⎣
𝐴(q̂−

𝑘 )r̂1
𝐴(q̂−

𝑘 )r̂2
...

[𝐴(q̂−
𝑘 )r̂𝑁

⎤
⎥⎥⎥⎦ (44a)

𝑦𝑘 =

⎡
⎢⎢⎢⎣
�̃�1(𝑘)

�̃�2(𝑘)
...

�̃�𝑁 (𝑘)

⎤
⎥⎥⎥⎦ (44b)

The relative position and velocity updates are:

�̂�+
𝑘 = �̂�−

𝑘 +Δ�̂�+
𝑘 (45a)

˙̂𝝆+
𝑘 = ˙̂𝝆−

𝑘 +Δ˙̂𝝆+
𝑘 (45b)

VII. SIMULATIONS

Fig. 1 shows a flowchart of the proposed algorithm for
estimating relative attitude and position. Numerical simula-
tions were performed to test the performance of the EKF
for estimating relative attitude, angular velocity, position and
translational velocity. For the leader, a circular orbit with
orbital radius of 7,078,000 m is considered. A bounded
relative orbit is used. The simulation time for the relative
motion of both spacecrafts is 90 minutes and the sampling
interval is 0.4 s. The initial quaternion (in rad) and angular
velocity (in rad/s) for the relative attitude motion is given
by:

q0 = [
√
2/2 0 0

√
2/2]𝑇 (46a)

𝝎0 = [−.002 .0011 .0022]𝑇 (46b)

The initial condition for the vector X in appropriate SI units
(rad, m and m/s) is:

X = [q𝑇
0 400 0 0 0 − .6361 0]𝑇 (47)
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∂r̂−𝑖
∂𝜌−

=

⎡
⎣−[(𝑌𝑖 − 𝑦)2 + (𝑍𝑖 − 𝑧)2] (𝑋𝑖 − �̂�)(𝑌𝑖 − 𝑦) (𝑋𝑖 − �̂�)(𝑍𝑖 − 𝑧)

(𝑋𝑖 − �̂�)(𝑌𝑖 − 𝑦) −[(𝑋𝑖 − �̂�)2 + (𝑍𝑖 − 𝑧)2] (𝑌𝑖 − 𝑦)(𝑍𝑖 − 𝑧)
(𝑋𝑖 − �̂�)(𝑍𝑖 − 𝑧) (𝑌𝑖 − 𝑦)(𝑍𝑖 − 𝑧) −[(𝑋𝑖 − �̂�)2 + (𝑌𝑖 − 𝑦)2]

⎤
⎦ (42)

Three beacons are assumed to exist on the leader spacecraft:

𝑋1 = 1𝑚 𝑌1 = .01𝑚 𝑍1 = .01𝑚 (48a)

𝑋2 = .01𝑚 𝑌2 = .5𝑚 𝑍2 = .86𝑚 (48b)

𝑋3 = .01𝑚 𝑌3 = −.5𝑚 𝑍3 = .86𝑚 (48c)

Measurement updates in the filter are only used when
the beacons are within the field of view of the sensor.
Measurement model is simulated with a standard deviation
of .0003 deg. Initialization of EKF is carried out by using
a nonlinear least squares routine from the synthetic mea-
surements. This gives initial relative angular velocity with
an error of 2 deg/hr for each axis. The initial errors in
relative position and velocity for each axis are 1 m and
.01 m/s respectively. The initial covariance sub matrix for
relative attitude, angular velocity, position and velocity is
taken to be a diagonal matrix with equal elements. Two sets
of simulations are carried out for the same initial conditions
of relative motion. Test Case 1 is based on the second order
approach for estimating relative angular velocity while Test
Case 2 uses first order approach to estimate relative angular
velocity. Fig. 2, Fig. 4, Fig. 6 and Fig. 7 are the plots obtained
for Test Case 1.

Fig. 2 shows the relative position errors with respective
3𝜎 bounds obtained from the EKF covariance matrix. The
relative position is known within .02 m for each axis and
error converges to zero in 15 s. The relative velocity errors
remain below .01 m/s as shown in Fig. 3 and error achieves
convergence in approximately 6 s. The relative angular
velocity errors are within .001 rad/s as shown in Fig. 4.
The relative attitude error remains well within .2 deg and
estimate errors for attitude are larger than actual error as can
be seen from 3𝜎 bounds in Fig.6. All errors remain within 3𝜎
bounds indicating that EKF is working properly. Fig. 3 and
Fig. 5 correspond to Test Case 2. Relative errors in position
and velocity are increased while still remaining within 3𝜎
bounds. Convergence time for errors also increase to 54 s
for relative position and to 35 s for relative velocity.

It can therefore be concluded that using second order
approach for estimating relative angular velocity gives more
accurate results as compared to the first order approach. The
possible reason for this is the use of two past measurements
along with the measurement at present time in the second
order approach and also a decrease in the truncation error.
Apart from this, the accuracy of the Kalman filter depends
upon the accuracy of the dynamic model and tuning of
process noise matrix. This means that between two sets of
measurements, accumulation of model error can take place
in the estimates. Estimates also depends on the number of
beacons on the leader and their spread, so as to ensure
minimum number of beacons in the field of view of VISNAV
sensor. Also, CW equations can only be applied when the
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[
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]𝑇
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Fig. 1: Flow Chart of the Proposed Algorithm

distance between the leader and follower is under 1 Km.

VIII. CONCLUSION

An algorithm for relative spacecraft navigation is de-
veloped to estimate relative state using only LOS vectors.
Extended Kalman filter is designed for estimating relative
angular velocity, attitude, position and velocity. Relative
angular velocity can be estimated independent of attitude and
gyro measurements from the spacecrafts. A combined EKF
is then designed to estimate relative position, velocity and
attitude. In the future work, gravitational perturbations, solar
pressure and higher order nonlinear effects can be included
in the dynamic model of Kalman filter. A combination of
generalized Clohessy and Wiltshire equations and Gauss
variational equations can be used for this purpose. In this
paper relative motion of only two spacecrafts is considered.
Numerical simulations involving extended leader follower
network can be carried on the similar lines.
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Fig. 2: Relative position errors and 3𝜎 bounds for Test Case 1 Fig. 3: Relative position errors and 3𝜎 bounds for Test Case 2

Fig. 4: Relative velocity errors and 3𝜎 bounds for Test Case 1 Fig. 5: Relative velocity errors and 3𝜎 bounds for Test Case 2

Fig. 6: Relative attitude errors and 3𝜎 bounds for Test Case 1 Fig. 7: Relative angular velocity errors and 3𝜎 bounds for Test Case 1
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