
Formulation, development and testing of real-time
algorithm for in-flight store IMU alignment

Himani Sinhmar

October 5, 2018

Contents
1 Synopsis 3

2 Requirements 3

3 Specifications 4
3.1 Design and Implementation . 4

3.1.1 Fusion with aiding sensors . 4
3.1.2 Parameter Tuning . 5

4 Master Schedule 6

5 Formulation of Self Alignment Problem 6
5.1 Mathematical Notations . 6

5.1.1 ECIF . 7
5.1.2 ECEF . 7
5.1.3 Navigation Frame . 7
5.1.4 Body Frame . 7

5.2 Symbols . 7

6 Inertial Navigation 8
6.1 Geometry of the earth . 8
6.2 Transformation . 9
6.3 Rotation Rate . 9
6.4 Inertial Navigation Equations . 10

6.4.1 Position Equations . 10
6.4.2 Velocity Equations . 10
6.4.3 Attitude Equations . 10

6.5 Gravity Model . 11
6.6 Navigation Output . 11

7 Model for Simulator 11
7.1 Modeling Accelerometer output . 11
7.2 Modeling Gyro Output . 11
7.3 Modeling Magnetometer output . 11

8 INS Error Model 12
8.1 Perturbation Analysis . 12
8.2 Position Error Equation . 12
8.3 Velocity Error Equation . 13
8.4 Attitude Error Equation . 13

9 Continuous Error Model 14

10 INS/GPS Integration 14
10.1 Loosely Coupled Integration . 14

1

11 Indirect Kalman Filter Configuration [8] 14
11.1 Feedback Mode . 14
11.2 Description of the fusion algorithm architecture . 15

12 Initialization 19
12.1 TRIAD : Orientation Angle . 19

12.1.1 Alignment method 1 . 19
12.1.2 Alignment method 2 . 19
12.1.3 Alignment method 3 . 20

12.2 Implementation . 20

13 Documentation for the MATLAB Code 20
13.1 SIMULATOR (simulator.m) . 20

13.1.1 Function files used by SIMULATOR . 21
13.2 Main Code (main.m) . 21

13.2.1 Measurement Model . 21
13.2.2 Alignment (alignment_1.m) . 21
13.2.3 Alignment (alignment_2.m) . 22
13.2.4 Alignment (alignment_3.m) . 23
13.2.5 IMU Outputs . 23
13.2.6 Extended Kalman Filter . 23
13.2.7 Implementation of the Kalman Filter . 24
13.2.8 Tuning Parameters . 25

14 Simulation results 25
14.1 Simulator plots . 25
14.2 Alignment method 1 . 25
14.3 Alignment method 2 . 25
14.4 Alignment method 3 . 25

2

1 Synopsis
Stores are required to be dropped from a variety of flight vehicles, from airplanes to parachutes.
Modern stores are ‘guided— they carry an Inertial Measurement Unit (IMU), typically consisting
of gyroscopes and accelerometers, which help in navigation and guidance. The IMU provides esti-
mates of the store states (position, velocity, angular rates and attitude) in flight. This information
is processed by an onboard controller which then appropriately varies the store control effectors in
flight to guide the store to a pre-decided target. This information usually suffers from error, e.g.,
due to noise, drift, etc.

The standard way to filter out the noise is to use a Kalman filter. When preparing to launch
the store from the mother ship, the store IMU must be correctly initialised along with the store
Kalman filter. Once this is done, the store IMU plus Kalman filter will be able to provide good
estimates of the store states to the onboard controller. Any drift in the IMU sensors will then be
periodically corrected by the other sensors on the store (e.g., GPS, magnetometer) and accurate
navigation and guidance can be achieved. Therefore, much hinges on how accurately the store
IMU is initialised.

Week 1 report focuses on presenting the requirements and specification of the problem given by
the client in an elaborated manner. A through literature survey was carried out which is narrowed
down to a few well well written papers on the transfer alignment problem and alignment methods
for the Strapdown Inertial Navigation System (SINS).

2 Requirements
This project is directed towards developing a real time algorithm for an in-flight guiding store IMU
alignment. The Kalman filter need to be designed so as to keep the computing cost and time under
check. The grade of IMU usually used in stores (as against those used in high-performance aircraft
and launch vehicles) is prone to drift, which needs to be periodically set right. This is typically
done by carrying another sensor/s which is relatively immune from the problem of drift, such as
GPS or magnetometer. Hence it is also required to design these supporting sensors.

The standard to initialize the store IMU and Kalman filter may be to copy navigation informa-
tion supplied by master IMU to the OnBoard Computer (OBC) of the slave directly. This approach
is called one shot Transfer alignment. Although this method has the advantage of simplicity to
implement, in real time environment this method may not give accurate estimation of navigation
information. While copying information of master OBC to that of the slave, the angular displace-
ment existing between master and slave axes of references (if exists at that particular instant when
copying) will be retained as misalignment error in the slave and as a result of that, slave OBC will
start with erroneous information.

On the other hand, under certain circumstances, it may not be possible to transfer the states
from the parent ship IMU to the store IMU. In this case, the store IMU must pick up the correct
states by itself with the help of the additional sensors it carries (e.g., GPS, magnetometer). This
is the ‘Self Alignment’ problem. The major issue here is to make sure that the initial ‘guess’ state
is close enough to the actual values so that the linear Kalman filter is able to converge and do so
in a reasonably short time.

An algorithm for the store IMU self alignment problem should be developed and tested. The
same algorithm with minimal changes is then to be applied to the Transfer Alignment problem.
The work requires:

1. Modeling of the sensors, both IMU and other supporting sensors, of the store with standard
error models

2. Formulating the Self Alignment problem by choosing the initial estimate of the states and
the Kalman filter

3. Writing a linear Kalman filter and checking its convergence and stability.

4. Integrating the sensor models, initial estimates and Kalman filter to provide accurate and
speedy estimates of the store states.

5. Integrating the other supporting sensors to correct for drift in-flight.

3

6. Testing the algorithm in all respects.

7. Modifying/ using the algorithm to address the Transfer Alignment problem, such that the
final algorithm can be used to solve either problem — Self Alignment or Transfer Alignment.

8. Preparing a detailed report with formulation, development details and test cases, including
convergence, stability, accuracy and real-time ability, accompanied by the final code

3 Specifications
When preparing to launch the store from the mother ship, its IMU is initially ‘switched on.’ At
this time, the store IMU must be correctly initialized along with the store Kalman filter. Transfer
alignment (TA) is the process of initializing the navigation sensors of launched from a platform.
The navigation device needs to know its initial position, velocity and attitude information before
entering the working condition. Through this method the misalignment between aligning and
aligned body is estimated, which facilitates navigation of aligning system during its post ejection
course of flight. The so-called alignment refers to the process of determining the coordinates of
the inertial navigation system with respect to the reference coordinate system. Measurements
provided by navigation sensors of aligning system are noisy compared to those of the launch
platform. Objective of TA process is to estimate the misalignment as accurately as possible in
order to improve dead reckoning of the store’s IMU. It is easy to know the initial position and
velocity information (such as with the help of GPS), but the initial attitude information needs to
be aligned. Fig. 1 (1) summarizes the requirements of the given problem.

3.1 Design and Implementation
State space formulation of TA problem facilitates the use of stochastic estimator in designing TA
algorithm. The process of TA may be depicted as in Fig. 2 (2), where differences in measurements
between master INS and slave INS, or differences between resolved measurement values of aligning
system along the fixed reference axes and expected values of those parameters along the same
axes are processed by the algorithm to produce corrected estimates of navigation information.
These differences become state variables in the state space representation of the system. General
formulation of TA problem in state space representation takes the form of a linear discrete time
system.

Inertial navigation system error models will be considered here. It is based on the INS error
equations (error in velocity, position and attitude). The system error dynamics can be written in
the matrix form as

Ẋ(t) = F (t)X(t) +W

Where X is the error state vector, F is the system matrix, and W is the process noise vector. A
fifteen state Kalman filter can be used for data fusion and error estimation, which includes nine
navigation solution errors of three dimensional position, velocity and attitude, three accelerometer
bias errors, and three gyro drifts. Measurements are taken from both : master and slave INS or
slave INS and aiding sensors such as GPS (Self alignment), magnetometer, etc. Other techniques
such as inertial measurement matching can be used with the help of an appropriate measurement
matrix. Some of very popular inertial measurement matching methods are acceleration matching,
velocity matching, position matching, angular rate matching or matching of some combination of
these measurements. For this purpose measurements provided by sensors of both IMU (master
and slave) may be compared with each other and resolved to estimate the alignment error. For
example, in velocity matching the velocity errors are taken as observations for the filter.

3.1.1 Fusion with aiding sensors

One of the major drawbacks of INS is the error associated with sensor measurements and this error
increases due to dead reckoning (integration scheme employed by INS for navigation). Although
various filters are used to reduce or correct noisy measurements, aiding from one or more different
sensors provides more accurate estimate. The method of updating states of a system with the
help of two or more types of sensors, like GPS, odometer compass, astronavigation system, etc.,
is known as sensor fusion technique. In case of TA problem, INS measurement may be aided with
barometric altimeter data, which provides measurement of height of the moving body.

4

Figure 1: A Summary of the Requirements

Figure 2: General form of TA problem

3.1.2 Parameter Tuning

Various factors like delay between master and slave measurement update, effect of flexure and
vibration, quantization error, etc., may affect sensor measurement. To achieve accurate estimation
of system states, a reasonable noise model needs to be associated with the measurement model
of the algorithm. In simulation environment, white Gaussian noise is assumed to fit with KF
requirement. Proper tuning of filter parameters, particularly Q (process noise covariance) and R
(measurement noise covariance) may improve the performance of KF in terms of accuracy. It is
difficult to set any value for the process noise covariance, Q, because of the lack of observation
of the states to be estimated. It has been shown that filter performance will be slowed down if
measurement noise is considered much higher than system noise, as gain of KF used will become
too low. On the contrary, the system will become unstable and will produce biased estimates,
if system noise is taken to be higher than measurement noise, because gain of KF will become
large on this occasion. Generally, the measurement noise covariance R is constructed based on the
maximum allowable differences in measurements of the mother and daughter, construction of Q is

5

based on sensor bias and initial noise covariance P0 is constructed based on Q and R.

4 Master Schedule
Item Work Scheduled Period (in weeks)
1 Requirement and Specifications T0 —T0 + 1

2
Formulation of Self Alignment
Problem with sensor models, ini-
tial estimate and Kalman filter

T0 + 1 —T0 + 3

3 Development of integrated Self
Alignment algorithm (coding) T0 + 3 —T0 + 6

4 Testing for convergence, stabil-
ity, accuracy, speed T0 + 6 —T0 + 8

5 Test case (Self Alignment prob-
lem) T0 + 8 —T0 + 9

6
Modification to Transfer Align-
ment problem — formulation,
development, testing

T0 + 9 —T0 + 12

7 Transfer of technology T0 + 12 —T0 + 13

5 Formulation of Self Alignment Problem
An INS is a navigation system which depends entirely on inertial measurements for navigation. An
INS consists of accelerometers which measure the translatory acceleration and gyroscopes which
measure the angular rotation of the system. This sensor array is called an Inertial Measurement
Unit (IMU). Using the measurements from the IMU, the INS can calculate the current attitude,
velocity and position of the system starting from some known initial point. An INS simply inte-
grates measured acceleration and rotation rate to determine the position, velocity and orientation
of the body frame.

Inertial navigation consists of three major parts: Alignment, navigation and aiding. During
the alignment phase, the alignment algorithm estimates the initial value of the body frame with
respect to the navigation frame, that is, the roll, pitch and yaw of the system. This is used by the
navigation algorithm to transform the measurements from the body frame to the navigation frame.
If the IMU is in-flight motion during alignment, this can be done by employing TRIAD algorithm.
When the alignment phase has obtained a sufficiently accurate estimate of the roll, pitch and yaw,
the navigation phase can begin. During navigation, a navigation algorithm continuously calculate
the roll, pitch and yaw from inputs from the gyroscopes, so acceleration measurements can be
resolved in the navigation frame and integrated to yield velocity and subsequently positions with
respect to the earth. Ultimately, this results in the latitude, longitude, height, velocity and attitude
outputs, which are the primary variables of interest in inertial navigation systems.

5.1 Mathematical Notations
In this report scalars are notated with no-bold lower case letters, vectors with bold lower case
letters and matrices are capital bold letters. All frames used in this thesis span a three-dimensional
Euclidean space. The basic vector of n− frame will be denoted by nx, ny, nz, where x, y and z are
the principal axes of the frame. The position vector r referenced in the n-frame will be denoted
by rn and the components are as follows

rn =
[
rnx rny rnz

]T
Column matrices that are coordinatized in a particular reference frame can be transformed to
another frame by the Direction Cosine Matrix (DCM)

rn = Cn
b rb

where Cn
b = DCM , transforms a column vector from body frame coordinates, b to navigation

frame coordinates n. The relative angular velocity of two frames is usually denoted as column

6

vectors with the subscript indication the rotational direction, where ωnin , is the angular velocity of
the n-frame relative to the i frame coordinatized in the n-frame. Angular velocities follow the usual
rules of vector addition. If rotations occur between a number of coordinate frames the subscript
notation facilitates the statement of the mathematical relationship (Britting,1971)

ωnib = ωnie + ωneb

In the matrix algebra of rotations it is often necessary to express the angular velocity in skew
symmetric form. The skew symmetric form of ω is denoted by its upper case form Ω as

(ωnin×) = Ωn
in =

 0 −ωnin,z ωnin,y
ωnin,z 0 −ωnin,x
−ωnin,y ωnin,x 0

5.1.1 ECIF

The Earth-Centered Inertial Frame (ECIF), denoted by the symbol i, is centered at the Earth’s
center of mass. The z-axis points along the Earth’s axis of rotation from the center to the North
Pole. The x-axis lies within the equatorial plane and the y-axis completes the right-hand set and
does not rotate with the Earth. When the navigation solution is initialized the ECIF is aligned to
the Earth-Centered Earth-Fixed Frame (ECEF)

5.1.2 ECEF

The Earth-Centered Earth-Fixed Frame, denoted by the symbol e, is similar to the ECIF, except
that all the axes remain fixed with respect to the Earth. The x-axis points towards the mean
meridian of Greenwich (0◦ longitude), z-axis points along the Earth’s axis of rotation from the
center to the North Pole and the y-axis completes the right-hand set.

5.1.3 Navigation Frame

The Navigation Frame (NF), denoted by the symbol n, is a local geodetic frame which has its
origin at the location of the navigation system. In this report a common geodetic frame is used,
the North, East, Down frame (NED), where the x-axis is pointing towards the geodetic north,
z-axis is orthogonal to the reference ellipsoid, pointing down, and y-axis completes the right-hand
set. The turn rate of the navigation frame, with respect to the Earth-fixed frame, ωen is governed
by the motion of origin of the NF with respect to the earth. This is often referred to as the
transport rate.

5.1.4 Body Frame

The body frame (BF), denoted by the symbol b, is rigidly attached to and defined within the
vehicle carrying the navigation system. Definitions for this frame have the x-axis along the vehicle
longitudinal axis, the z-axis downward, and the y-axis pointed outwards, completing the right-hand
set. For angular motion the x-axis is the roll (φ), y-axis is the pitch (θ) and the z-axis is the yaw
or heading (ψ).

5.2 Symbols
• ε : Eccentricity of the ellipsoid

• ε :Attitude error vector

• θ : Pitch

• λ : Longitude

• ϕ : Latitude

• φ : Roll

• Φ State Transition Matrix

7

• ψ : Yaw

• ω : Angular rate vector

• Ω : Skew symmetric matrix form of ω

• C : Direction Cosine Matrix

• e : Measurement noise vector

• f : Specific force vector

• F : Dynamics matrix

• G : Design matrix of system noise

• g : Gravity vector

• h : height

• H : Design matrix for measurement

• I : Identity matrix

• K : Kalman gain matrix

• M : Radius of curvature in meridian

• N : Radius of curvature in prime vertical

• P : Covariance matrix

• r : Position vector

• re : Semi-major axis of the ref. ellipsoid

• rp : Semi-minor axis of the ref. ellipsoid

• u : Continuous time system noise vector

• v : Velocity vector

• x : State vector

• z : Measurement vector

• w : Linearized system noise vector

The main reference for the subsequent sections is [3].

6 Inertial Navigation

6.1 Geometry of the earth
To develop an Inertial Navigation System (INS) error model it is necessary to model certain aspects
of the Earth. The model of the Earth used in this report is based on the World Geodetic System
(WGS-84), which defines many of the constants that are used in the INS error model, as well as
the gravity model. In order to determine the position on Earth using inertial measurements, it
is necessary to make some assumptions regarding the shape of the Earth. An ellipsoid model is
used to reference the Earth geometry. In accordance with this model, the following parameters are
defined : The length of the semi-major and semi-minor axes, and the eccentricity of the ellipsoid
are defined as

re = 6378137m

rp = 6356752.3m

ε =

(
1−

(
r2p
r2e

)1/2)

8

The meridian radius of curvature M and a transverse radius of curvature N may be derived in
accordance with the following equations

M =
re(1− ε2)

(1− ε2sin2ϕ)3/2

N =
re

(1− ε2sin2ϕ)1/2

6.2 Transformation
The DCM from the e-frame to the n-frame can be expressed as

Cn
e =

−sin(ϕ)cos(λ) −sin(ϕ) cos(ϕ)
−sin(λ) cos(λ) 0

−cos(ϕ)cos(λ) −cos(ϕ)sin(λ) −sin(ϕ)

 (1)

Due to the fact that the coordinate systems are orthogonal the DCM in opposite direction, from
n-frame (NF) to e-frame (ECEF) is obtained by transposing the Cn

e , Ce
n = (Cn

e)T . The DCM
from b− frame to n−frame is given by

Cb
n =

 cos(θ)cos(ψ) cos(θ)sin(ψ) −sin(θ)
−cos(φ)sin(ψ) + sin(φ)sin(θ)cos(ψ) cos(φ)cos(ψ) + sin(φ)sin(θ)sin(ψ) sin(φ)cos(θ)
sin(φ)sin(ψ) + cos(φ)sin(θ)cos(ψ) −sin(φ)cos(ψ) + cos(φ)sin(θ)sin(ψ) cos(φ)cos(θ)

(2)

The Euler angles can be determined from the DCM Cn
b by reverse transformations

φ = arctan2(C32, C33) (3a)
θ = −arcsin(C31) (3b)
ψ = arctan2(C21, C11) (3c)

where Cij are the (i, j)-th elements of the DCM, Cn
b matrix.

6.3 Rotation Rate
The Earth’s rotational rate is well known and can be assumed to be a constant

ωe = 7.29211510−5rad/s (4)

The rotational rate vector of the e-frame with respect to the i-frame is defined as

ωeie =
[
0 0 ωe

]T (5)

ωnie = Cn
eω

e
ie =

[
ωecos(ϕ) 0 −ωesin(ϕ)

]T (6)

The rate of change of latitude and longitude is expressed in terms of M and N as follows

ϕ̇ =
vN

M + h
(7a)

λ̇ =
ve

(N + h)cosϕ
(7b)

where h is the ellipsoidal height, and the transport rate represent the turn rate of the n-frame in
respect to the e-frame is expressed as follows

ωnen =
[
λ̇cosϕ −ϕ̇ −λ̇sinϕ

]T
=

vE

(N+h)

− vN
(M+h)

−vEtanϕ(N+h)

 (8)

where vN , vE and vD are velocities in the NED frame. The equation for ωnin can be obtained as
ωnin = ωnie + ωnen

ωnin =

 ωecosϕ+ vE
N+h

− vN
M+h

−ωesinϕ− vEtanϕ
N+h

 (9)

9

6.4 Inertial Navigation Equations
Differential equations describing navigation states are developed in the following section. In devel-
oping the equations, the objective is to form an expression for navigation states in terms of sensed
accelerations and angular rates available from accelerometers and gyros, respectively.

6.4.1 Position Equations

The position in the n-frame is expressed by curvilinear coordinates

rn =
[
ϕ λ h

]T (10)

The velocities in the n-frame are defined by

vn =

vNvE
vD

 =

M + h 0 0
0 (N + h)cosϕ 0
0 0 −1

ϕ̇λ̇
ḣ

 (11)

The derivatives of the latitude, longitude, and height can be written as

ṙ =

ϕ̇λ̇
ḣ

 =

 1
M+h 0 0

0 1
(N+h)cosϕ 0

0 0 −1

vNvE
vD

 (12)

6.4.2 Velocity Equations

The Earth’s relative velocity vector, vn , in the rotating navigation n-frame is defined in terms of
the rotating ECEF e-frame position as

vn = Cn
e ṙe

A detailed derivation of the velocity equation is given in [3]. The final velocity equation is defined
as :

v̇n = Cn
b f b − (2Ωn

ie + Ωn
en)vn + gn (13)

where the specific force vector, f , is defined as the difference between the true acceleration in
space and gravitational acceleration.

fn = Cn
i r̈i − ḡn (14)

The ḡn is the gravitational acceleration and g is the gravity vector.

gn = ḡn + Cn
e (Ωe

ieΩ
e
ier

e)

The n-frame velocity can also be expressed using the vector cross-product form for the rotation
rates as

v̇n = Cn
b f b − (2ωnie ×+ωnen×)vn + gn

where −2ωnie × vn is the acceleration caused by its velocity over the surface of a rotating Earth,
often referred to as the Coriolis acceleration and −ωnen×[ωnen×rn], vn = ωnen×rn, is the centripetal
acceleration experienced by the system owing to the rotation of the Earth, and is not separately
distinguishable from the gravitational acceleration which arises through mass attraction, g.

6.4.3 Attitude Equations

The attitude dynamics equation is represented by the DCM differential equation. In this form,
once initialized, it can be integrated without specific expressions for each of its elements. The
attitude dynamics is obtained from the following

Ċn
b = −Ωn

bnCn
b (15)

where
ωnbn = ωnin −Cn

bω
b
ib (16)

The rotation vector ωbib represents the output of the gyros.

10

6.5 Gravity Model

The gravity vector in the n-frame, gn, is approximated by the normal gravity vector
[
0 0 γ

]T .
Let us assume a spherical Earth model and the following simplified inverse square gravity model,
where γ varies with altitude

γ = γ0(
R

R+ h
)2 (17)

where γ0 is the normal gravity at h = 0 and R =
√
MN

6.6 Navigation Output
The latitude and longitude can be extracted from the Cn

e as :

ϕ = arccos(C13) (18a)
λ = arccos(C22) (18b)

7 Model for Simulator
The sensors that are needed : GNSS receiver (GPS measurements), magnetometer for initialization
of orientation errors and IMU. Other sensors such as barometer can be fused later for further
accuracy. In this section a simulation model is derived using the equations of motion. This model
enables one to create repeatable test data as well as test the system under well-defined conditions
such as erroneous sensor outputs. This simulation model should output the acceleration, rate and
magnetic field sensed by the sensors when the vehicle is moving.

Figure 3: Simulator and INS

7.1 Modeling Accelerometer output
Rearranging and rotating Eq.(13):

f b = Cb
n(v̇n + (2Ωn

ie + Ωn
en)vn − gn) (19)

The ωnie is given by Eq.(6). The Cb
n is calculated using the body rotations ωnbn supplied by the

user
Ċb
n = Cb

nΩn
bn (20)

At start of the simulation, the Cb
n is initialized by the user. vn and ωnen are given by Eq.(11) and

Eq.(8) respectively.

7.2 Modeling Gyro Output
The outputs from the gyros is

ωbib = Cb
n(ωnie + ωnen + ωnnb) (21)

which is calculated by inserting Eq.(6), Eq.(8) and ωnnb given by the user.

7.3 Modeling Magnetometer output
A three-axis magnetometer measures the direction and the intensity of the magnetic field around
the sensor. If this magnetic field is not perturbed, it corresponds to the Earth’s magnetic field.
The magnetometer measurements are the projection of this magnetic field m in the b- frame

mb = Cb
nmn (22)

11

The Earth’s magnetic field is (in the Northern Hemisphere) directed toward the North Magnetic
Pole and the inside of the Earth. With the aim of simulating all kinds of trajectories, an Earth’s
magnetic field model, called the World Magnetic Model, can be implemented in the simulator to
provide the reference unperturbed magnetic value for any vehicle position. This model allows also
simulating any movement between the two polar circles. The value of mn is given by this model

This model was obtained by the interpolation of multiple measurement centers all on the Globe
and is an empirical model. This is why it is only valid for five years and is constantly evolving. The
implementation of this model also provides the value of the reference everywhere on the surface
of the Earth. This allows simulations of trajectories everywhere, but also simulations of a long
duration.

8 INS Error Model
In this section the nonlinear navigation state equations for position, velocity and attitude are
linearized to obtain linear nine state error model, based on perturbation analysis. The purpose of
the error model is to describe the propagation of the errors in the navigation equations. The errors
are defined as the angle between the actual DCMs and the DCMs computed in the navigation
computer and the velocity difference between the actual velocity of the INS and the velocity used
by the navigation computer [5].

8.1 Perturbation Analysis
The error analysis in this thesis utilizes perturbation methods to linearize the nonlinear system
differential equations. For example, the perturbation of the position, velocity, attitude DCM, and
gravity can be expressed as

r̂n = rn + δrn (23a)
v̂n = vn + δvn (23b)

Ĉn
b = (I−En)Cn

b + δrn (23c)
ĝn = gn + δgn (23d)

where, e.g., v̂ = computed velocity, v = true velocity and, δv = computed velocity error,
g is the normal gravity vector and En is the skew symmetric form of the attitude errors

En = (ε×) =

 0 −εD εE
εD 0 −εN
−εE εN 0

 (24)

When substitutions of the type above are made for dependent variables in the nonlinear differential
equations and products of error quantities are neglected, linear differential equations involving only
the error quantities emerge. The derivation of Eq.(23c) is given in (Britting, 1971) The error state
vector is defined as

x =
[
δrn δvn εn

]T (25)

where δrn is the position error vector, δvn is the velocity error vector, and εn is the attitude error
vector, that defines En.

8.2 Position Error Equation
Linearized position error dynamics can be obtained by perturbing Eq. (12). The position error
dynamics equation can be obtained using the partial derivatives, because the position equations
are a function of position and velocity

δṙn = Frrδr
n + Frvδv

n (26)

12

where

Frr =

∂ϕ̇
∂ϕ

∂ϕ̇
∂λ

∂ϕ̇
∂h

∂λ̇
∂ϕ

∂λ̇
∂λ

∂λ̇
∂h

∂ḣ
∂ϕ

∂ḣ
∂λ

∂ḣ
∂h

 =

 0 0 − vN
(M+h)2

vEsinϕ
(N+h)cos2ϕ 0 − vE

(N+h)2cosϕ

0 0 0

Frv =

∂ϕ̇
∂vN

∂ϕ̇
∂vE

∂ϕ̇
∂vD

∂λ̇
∂vN

∂λ̇
∂vE

∂λ̇
∂vD

∂ḣ
∂vN

∂ḣ
∂vE

∂ḣ
∂vD

 =

 1
M+h 0 0

0 1
(N+h)cosϕ 0

0 0 −1

8.3 Velocity Error Equation
The computed version of Eq.(13) can be written as

˙̂vn = Ĉn
b f̃ b − (2ω̂nie + ω̂nen)× v̂n + gn (27)

The velocity error dynamics are given by

˙δvn = Fvrδr
n + Fvvδv

n + (fn×)εn + Cn
b δf

b (28)

where

Fvr =

 −2vEωecosϕ− v2e
(N+h)cos2ϕ 0 − vNvD

(M+h)2 +
v2Etanϕ
(N+h)2

2ωe(vNcosϕ− vDsinϕ) + vEvN
(N+h)cos2ϕ 0 vEvD

(N+h)2 + vEvN tanϕ
(N+h)2

2vEωesinϕ 0
v2E

(N+h)2 +
v2N

(M+h)2 −
2γ
R+h

Fvv =

 vD
M+h −2ωesinϕ− 2 vEtanϕN+h

vN
M+h

2ωesinϕ+ vEtanϕ
N+h

vD+vN tanϕ
N+h 2ωecosϕ+ vE

N+h

−2 vN
M+h −2ωecosϕ− vE

N+h 0

• fn is the specific force vector (obtained from IMU measurements) in n-frame

• δf b is the noise in the accelerometer measurements which is modeled as white Gaussian noise.

8.4 Attitude Error Equation
The computed version from the INS mechanization output of Eq.(15) can be written as

˙̂
Cn
b = Ĉn

b (Ω̂
b

ib − Ω̂
b

in) (29)

The attitude error dynamics equation can be rewritten as

ε̇n = Ferδr
n + Fevδv

n − (ωnin×)εn −Cn
b δω

b
ib (30)

where

Fer =

 −ωesinϕ 0 −vE
(N+h)2

0 0 vN
(M+h)2

−ωecosϕ− vE
(N+h)cos2ϕ 0 vEtanϕ

(N+h)2

Fev =

 0 1
N+h 0

− 1
M+h 0 0

0 − tanϕ
N+h 0

• ωnin is obtained from Eq.(9)

• δωbib is the noise in the gyro measurements and is modeled as white Gaussian noise.

13

9 Continuous Error Model
The final, continuous, error model can be constructed using Eq.(26), Eq.(28) and Eq.(30) as follows

ẋ = Fx + Gu (32)

where F is the dynamic matrix, x is the state vector, G is the design matrix and u is the forcing
vector function.

F =

Frr Frv 0
Fvr Fvv (fn×)
Fer Fev −(ωnin×)

x =

[
δrn δvn δεn

]
G =

 0 0
Cn
b 0

0 −Cn
b

u =

[
δf b

δωbib

]
The specific force, fn, is the sensed output of the accelerometer transformed into the navigation
frame as Cn

b f b. The total angular velocity of the local-level navigation frame with respect to the
inertial frame is given by Eq.(9).

10 INS/GPS Integration
A number of different INS/GPS integration schemes can be used. Few of those are [3]:

1. Uncoupled system in which GPS estimated position is used simply to reset the INS indi-
cated position at regular intervals of time

2. Loosely coupled system in which the INS and GPS estimates of position and velocity are
compared, the resulting differences forming the measurement inputs to a Kalman filter

3. Tightly coupled system in which the GPS measurements of pseudorange and rate are
compared with estimates of these quantities generated by the internal system

10.1 Loosely Coupled Integration
Two different approaches for this type of integration are feedforward and feedback methods as
shown in 4.In this work, sensor model is assumed to be corrupted just with white Gaussian noise
without any biases. In the feedforward method the estimated navigation errors are fed forward to
the navigation output and subtracted. The main problem with the feedforward method is that the
INS is not aware of the aiding and an unbounded error growth may occur.In the feedback method
the errors are fed back to the INS mechanization to correct the equipment.

11 Indirect Kalman Filter Configuration [8]
In the indirect integration approach, the set of variables linked to the error in the equations of
motion is considered as the estimated variable in the Kalman filter.

11.1 Feedback Mode
In the feedback mode of the indirect integration, the corrected set of navigation variables replaces
the previous value of the set of navigation variables. The set of error variables is then reset to zero
for the next round of estimation. This configuration is the most robust one and is necessary when
operating with low-cost sensors. This approach has been implemented in MATLAB.

14

(a) Feedforward method for Kalman filtering [3]. (FMC : Flight
Management Computer

(b) Feedback method for Kalman filtering [3]. (FMC :
Flight Management Computer)

Figure 4: Loosely coupled integration

11.2 Description of the fusion algorithm architecture
In this subsection a brief description of the fusion algorithm is presented. There are 2 multirate
sensors and navigation filter operating with different frequencies:

• GPS : 8Hz

• IMU : 34 Hz

• Filter : 100 Hz

The hierarchical structure of the algorithm is presented in 5. The top level functions depicted in
6 are the equation of motion solutions and navigation filter. The navigation filter is composed of
two main parts: the Kalman filter and the error control as shown in 7. The “error control” block
manages the relation between the “extended Kalman filter” and the “integration of eq. of motion".
The feedback mode implies the correction of the solution of the equations of motion and the reset
of the estimated error variables. This is what "error control" function does. Here Kalman filter
block has inputs from IMU and GPS (Kalman filter control) and the "correction" is measurement
difference zk = xIMU

k − xGPSk . 8, 9 and 10 detail the Kalman filter operation and the explanation
of the two modes (with or without external measurement) follows. Note that in 8 1,2,3,4 are inputs
to the filter where

• 1 is from error control

• 2 is from Kalman filter control

• 3 is input form IMU/GPS (sensor readings)

• 4 is from integration of eq. of motion

The propagation of the estimates (state variables and covariance matrix) is done at each time
step, whereas the event "correction" is driven by the reception of an external measurement. When
there is no external measurement, the Kalman filter operates in the propagation mode. The
“event correction” signal provided to the block “Correction of estimates” is FALSE. It drives a null
output for the correction of the state variables and the covariance matrix. This correction (null
for the propagation phase) is then sent to the “State vector propagation” and “Covariance matrix
propagation” functions of 8. An inside look at the function “Covariance matrix propagation”
is shown at 10. Since the correction is null, only the propagation of the covariance matrix is
performed.

On the other hand, if there is an external signal available, the “event correction” signal is
TRUE and the Kalman filter superposes the correction phase to the prediction phase. In fact,
this event triggers the computation of a correction in the block “Correction of estimates” of 8, and
detailed at 9. In this detailed figure, the difference between the external signal (GPS signal) and
the INS solution is first computed, and the result is used in the “Computation of corrections to
estimates” block. These corrections are sent to the “State vector propagation” and “Covariance
matrix propagation” blocks of 8. It should be noted that a “system parameters” function updates
the time varying parameters of the system model as depicted in 8

15

Figure 5: Hierarchical structure of the algorithm

Figure 6: Top-level functions

16

Figure 7: Navigation filter function

Figure 8: Kalman filter filter function

17

Figure 9: Correction of estimates function

Figure 10: Propagation and correction of covariance matrix estimate

18

12 Initialization
At navigation system start-up the expected values of position, velocity and orientation as well
as the corresponding error covariances are required to initialize the integrators of the inertial
navigation equations and the navigation error filter. Initial values for position and velocity and the
corresponding covariances are easily obtained from the GNSS receiver. Estimation of the initial
orientation and Cn

b is expalined in the subsequent sections.

12.1 TRIAD : Orientation Angle
The Three-Axis Attitude Determination (TRIAD) method, which was originally presented by
Black for satellites, will be used in the following for the in-flight orientation initialization. The
roll angle, pitch angle and heading angle are estimated by means of two arbitrary vectors that are
simultaneously observed in the n - and in the b-frame. Let these two vectors be given by

an,ab

bn,bb

The vectors do not have to be orthogonal but must not be co-linear. Then, the transformation
matrix Cn

b is given with
Cn
b = AB−1

where

A =

an

bn

cn

 (33)

B =

ab

bb

cb

 (34)

cn = an × bn

cb = ab × bb

The Euler angles φnb , θ
n
b and ψnb can be calculated from the entries of the transformation matrix

Cn
b .

12.1.1 Alignment method 1

The vectors are chosen to be integrated acceleration observations and magnetic fields with

• ab = integrated acceleration observation obtained by integrating f b

• an = using velocity measurements from GPS which are in n-frame

• bb = magnetometer readings which are in b-frame

• bn = earth’s magnetic field in n-frame

12.1.2 Alignment method 2

Assuming that the aircraft is in steady flight v̇n = 0. Using Eq. 19 we have fn = (2Ωn
ie+Ωn

en)vn−
gn. Then, the vectors are chosen to be acceleration and magnetic fields with

• ab = accelerometer readings given by f b

• an = given by above eq. using gravity vector and vn is obtained for GPS

• bb = magnetometer readings which are in b-frame

• bn = earth’s magnetic field in n-frame

19

12.1.3 Alignment method 3

The vectors are chosen to be accelerations and integrated acceleration observations with

• ab = accelerometer readings given by f b

• an = given by above eq. using gravity vector and vn is obtained for GPS

• bb = integrated acceleration observation obtained by integrating f b

• bn = using velocity measurements from GPS which are in n-frame

This method eliminates the need of on-board magnetometer

12.2 Implementation
The idea behind alignment is to use the measurements to determine the orientation of the body
frame with respect to a reference frame, here navigation frame. The alignment of an IMU is the
determination of the initial DCM Cn

b .

1. Initialization is carried out as explained in section 12. After initialization we have the knowl-
edge of initial Cn

b and initial error state vector

2. With the continuous input of IMU measurements (f b and ωbib) Eq.(12), Eq.(13) and Eq.(15)
are numerically integrated to obtain position r, velocity v and DCM Cn

b . Orientation angles
are computed from Cn

b using Eq.(3).

3. A nine state Kalman filter is used for the navigation purpose which include nine navigation
solution errors of three dimensional position, velocity and attitude. Filter is initialized by
the output of the alignment/initialization process.

4. The measurement model fed to filter is the difference between IMU measurements (position
and velocity) and GPS measurements (position and velocity).

5. Filter outputs error in the state (position, velocity and attitude). This error is subtracted
from the INS obtained state giving us the corrected state to be passed on to the controller.

6. The corrected states are also used in the propagation equations of the filter which are given
in the next section.

13 Documentation for the MATLAB Code
This section briefly explains the implementation of the self-alignment algorithm in MATLAB. Since
the IMU unit is not available, a magnetometer-augmented IMU simulator is developed.

13.1 SIMULATOR (simulator.m)
Input to the simulator : Trajectory of the aircraft (traj) in CSV format and the discrete time
step (dt). Trajectory comprises of latitude, longitude, altitude and Euler angles (φ, θ & ψ) in
n-frame for all the time steps during motion. Output of the simulator : acceleration ab, angular
velocity ωbib, magnetic field mb, velocity in n-frame vn (Velocity is given as output for modeling
GPS) Following steps were implemented in order

1. Cn
b is calculated from input Euler angles and Eq.(2)

2. Smooth trajectory parameters are generated by fitting position and attitude sequence as
piece-wise continuous cubic spline

3. ṙn, v̇n and
[
φ̇ θ̇ ψ̇

]T
are computed using fnder() function of MATLAB

4. Then using Eq.(11) vn is computed

5. ωnie and ωnen is then computed using Eq.(6) and Eq.(8) respectively.

20

6. ωbnb is given by

ωbnb =

1 0 −sinθ
0 cosφ sinφcosθ
0 −sinφ cosφcosθ

φ̇θ̇
ψ̇

 (35)

7. Finally ab and ωbib are computed using Eq.(19) and Eq.(21)

8. It is assumed that no external magnetic field is present near the sensors except the earth’s
magnetic field. Then mn is given by using MATLAB’s inbuilt function wrldmagn.

9. Magnetometer output is given by coordinate transformation of mn, i.e. mb = Cb
nmn

13.1.1 Function files used by SIMULATOR

• omegas.m : returns ωnie and ωnen given ϕ, h, vn, λ̇ and ϕ̇

• C_nb.m : returns DCM Cb
n for given Euler angles

• gravity.m : returns gravity vector, gn, for a given altitude and latitude

• acc.m : returns ab given vn, v̇n, ωnie, ωnen, Cb
n, gn

• gyro.m : returns ωbib given Cb
n, ωnie, ωnen and ωbnb

• crossm.m : for a vector v returns (v×)

13.2 Main Code (main.m)
13.2.1 Measurement Model

GPS readings are used as measurements for the navigation filter. For now, the GPS readings
([rngps vngps]

T) are simply given by corresponding true values corrupted by white Gaussian noise
with the standard deviation σrgps and σvgps and zero mean.

rngps = rntrue +mvnrnd(0, σ2
rgpsI3) (36a)

vngps = vntrue,+mvnrnd(0, σ2
vgpsI3) (36b)

rtrue is directly known from the trajectory file while vtrue is given by the simulator (using forward
difference scheme). mvnrnd is a MATLAB inbuilt function that returns an n-by-d matrix R of
random vectors chosen from the multivariate normal distribution with mean MU, and covariance
SIGMA, usage : R = mvnrnd(MU,SIGMA)

13.2.2 Alignment (alignment_1.m)

Initialization time (tini) and time step dt are given by the user as an input. Two vectors needed
for TRIAD algorithm are integrated acceleration observation vectors a_b0, a_n0 and magnetic
field vectors b_b0, b_n0. The change of the DCM Cn

b with time due to orientation changes of the
aircraft in the initialization phase is expressed on the one hand by the change of the n -frame with
time, Cn

n0
, and on the other hand by the change of the b-frame with time, Cb0

b , starting from the
initial DCM Cn0

b0
. Full derivation can be found in [1]. Final equations used in the code are given

as follows :

ab0 =

∫ t

t0

Cb0
b f bdt (37a)

Cb0
b = quat2rotm(qTbb0) (37b)

q̇bb0 =
1

2
(qbb0 ω̆ib − ω̆ib(t0)qbb0) (37c)

an0 = vn(t)− vn0(t0)− gn(t− t0) (37d)

where quat2rotm is a MATLAB function that converts a given quaternion to Rotation matrix,
ω̆ib = [0;ωib]. Fourth order Runge Kutta is used to integrate Eq.(37a) and Eq.(37c). Final vectors
a_n0, a_b0 and magnetic field vectors m_b0, m_n0 are computed at the final time step of the

21

initialization period and passed on to compute Cb
n(t0) using TRIAD as explained in Eq.(33) and

Eq.(34). Instead of using quaternion, DCM dynamics can be invoked for Eq.(37b) and Eq.(37c)

Ċb0
b = −Ωb0

bb0
Cb0
b

This equation is integrated using fourth order Runge Kutta to get Cb0
b with initial value as I.

Initialization of orientation error & error covariance matrix

In order to compute orientation error the error vectors of ab0 and an0 , δab0 and δan0 are required.
As before, full derivations of error equations can be found in [1] and only final form of the equations
are stated here.

δan0 = δvn − δvn(t0) (38)

The discrete-time version of the state-space model with sample time dt for computing δab0 is given
by[
δab0k
εb0b̃0,k

]
=

[
I3 −Ω(Cb̃0

b,k−1ã
b
k−1)dt

03 I3 + Ω̃ib,0dt

] [
δab0k−1
εb0b̃0,k−1

]
+

[
Cb̃0
b,k−1dt 03

03 Cb̃0
b,k−1dt

] [
δf bk−1
δωbk−1

]
−
[

03

δωib,0dt

]
(39)

where the variables with tilde represents error in measurement and Cb̃0
b0

is the small angle rotation
matrix and [

δab00
εb0b̃0,0

]
= zeros(6, 1) (40)

Using Eq.(39) error vectors are calculated for each time step of the initialization period. Error
vectors for magnetic field are given by:

δbb0 = −(Cb̃0
b m̃b×)εb0b̃0 + Cb̃0

b δm
b (41)

δbn0 = δmn (42)

The perturbations in magnetic field and velocity are assumed to be white Gaussian and uncorre-
lated. Error in accelerometer and gyro measurements is modeled as white Gaussian noise. The
initial orientation error and error covariance matrix for attitude is then a function of these error
vectors.(Eq. 4.72-4.74 in [1]).

13.2.3 Alignment (alignment_2.m)

Two vectors (a and b) needed for TRIAD algorithms are accelerometer output, f b and fn, and
magnetic field. Here

fn = (2Ωn
ie + Ωn

en)vn − gn

Initialization of orientation error

Error vectors for acceleration is given as follows

δab0 = −(Cb̃0
b f̃ b×)εb0b̃0 + Cb̃0

b δf
b (43)

δan0 = (2δΩ̃
n

ie + δΩ̃
n

en)vn + (2Ω̃
n

ie + Ω̃
n

en)δvn − δgn (44)

22

13.2.4 Alignment (alignment_3.m)

Two vectors (a and b) needed for TRIAD algorithms are accelerometer output, f b and fn, and
integrated acceleration observation. Here

ab0 = Cb0
b f b

an0 = (2Ωn
ie + Ωn

en)vn − gn

bb0 =

∫ t

t0

Cb0
b f bdt

Ċb0
b = −Ωb0

bb0
Cb0
b

bn0 = vn(t)− vn0(t0)− gn(t− t0)

Initialization of orientation error

Error vectors for acceleration is given as follows

δab0 = −(Cb̃0
b f̃ b×)εb0b̃0 + Cb̃0

b δf
b (45)

δan0 = (2δΩ̃
n

ie + δΩ̃
n

en)vn + (2Ω̃
n

ie + Ω̃
n

en)δvn − δgn (46)

δbn0 and δbb0 are given by Eq. 38 and Eq. 39 respectively

13.2.5 IMU Outputs

The outputs of the IMU (accelerometer and gyroscope) after the alignment are stored in fb and
gb matrices. Fourth order Runge-Kutta method is used to integrate Eq.(12), Eq.(13) and Eq.(15).
Vertical Channel (altitude, h)
Relying only on an inertial measurement for calculation of the vertical channel will render it
exponentially unstable (Rogers, 2007). The reason for the unstable behavior is that h is dependent
on g. As h increases, g decreases, creating upward acceleration. The vertical channel must be
aided with an external measurement to keep it within an acceptable value, for e.g. a barometer as
an aid. For this reason altitude values obtained from GPS are directly used in the integration of
IMU measurements.

So this segment of the code gives position, velocity and DCM Cn
b (equivalently Euler angles) as

computed by IMU/INS. IMU is used to refer to sensor measurements (f b and ωbib) and INS(Inertial
Navigation System) are the navigation equations that make use of IMU measurements to give
position, velocity and attitude

13.2.6 Extended Kalman Filter

A nine state Kalman filter is used for the alignment and navigation purpose which includes nine
navigation solution errors of three dimensional position, velocity and attitude :

ẋ = Fx + Gu (47)

δf b and δωb are modeled as white Gaussian noise with standard deviation given by σacc and σgyro.
The continuous system is discretized as :

xk = Φk−1xk−1 + Wk−1 (48)

The solution for discretized matrix Φk−1 and covariance matrix associated with W, Qk, is given
by VanLoan method. The velocity and position errors are taken as observations for the filter. It
can be obtained from the velocity errors between the INS and the GPS (Eq. 36). It is expressed
as follows:

z =

[
rnINS − rnGPS
vnINS − vnGPS

]
(49)

Therefore, the measurement model is liner and can be written as:

zk = Hkxk + Vk (50)

where Vk is the white noise with zero mean and covariance Rk. and

Hk =

[
I 03×3 03×3

03×3 I 03×3

]

23

13.2.7 Implementation of the Kalman Filter

Notations as used in the code:

• P0 ≡ Error covariance matrix of size 9×9

• K ≡ Kalman gain

• x_p ≡ state after update at time tk

• r ≡ position vector in n-frame

• vel ≡ velocity vector in n-frame

• Q_sdm ≡ Process noise covariance matrix associated with u

• R ≡ Covariance matrix associated with measurement

• err ≡ Error in the state

• att_err0 ≡ Initial attitude error obtained from Initialization algorithm

• P0_att ≡ Initial attitude error covariance matrix obtained from Initialization algorithm

• σ ≡ standard deviation

• o_ibb ≡ ω of b-frame wrt i-frame projected onto b-frame

Computation at time tk
Initial state i.e. xm,0 = [zeros(6, 1); att_err0]
Kalman gain and measurements

K = P0 ∗H.′ ∗ (H ∗ P0 ∗H.′ +R) (51)
z = [rimu − rgps,k vimu − vgps,k] (52)

Update Step, if measurements are available

xp,k = xm,k +K ∗ (z −H ∗ xm,k) (53)
P0 = (I9 −K ∗H) ∗ P0 ∗ (I9 −K ∗H).′ +K ∗R ∗K.′ (54)
errk = xp,k (55)
rk = rimu,k − xp,k(1 : 3) (56)

velk = vimu,k − xp,k(4 : 6) (57)
attk = attimu,k − xp,k(7 : 9) (58)

Propagation

[Phi,Q] = V anLoan((F, dt,Qsdm,G) (59)
xm,k+1 = Phi ∗ xp,k (60)

P0 = Phi ∗ P0 ∗ Phi.′ +Q (61)

where VanLoan() is a MATLAB function for obtaining discrete state transition matrix and covari-
ance matrix. The propagation of the true states is then done by using Eq. 12, 13 and 15 using
updated value at that time step (Eq. 56-58)

When only IMU measurements are available only propagation takes place and true states are
corrected as given by INS at that time step. When neither IMU nor GPS values are available on
propagation takes place with no correction of true states.

24

13.2.8 Tuning Parameters

σrgps [1e-3;1e-3;3] (rad;rad;m)
σvgps [1e-2;1e-2;1e-2] (m/s)
t_ini 15 s
dt .1s
σacc [15;55;48] (m/s2)
σgyro [3;.3;3]deg/h
σmn 5e-11 Tesla
σmb 4e-11 Tesla
σvel_n [1e-3;9e-3;7e-3] (m/s)
σrn [1e-5;1e-5;3e-2] (rad;rad;m)

Subscript mn, mb, acc, gyro, vel_n denote magnetic field in n-frame, magnetic field in b-frame,
accelerometer measurements, gyroscope measurements, velocity in n-frame. The standard devia-
tion for the velocity and position in n-frame is used during the alignment, Eq.(38), for obtaining
error in acceleration in n-frame [1].
The Q and R matrix for Kalman filter are given as follows

Q =

225 0 0 0 0 0
0 3025 0 0 0 0
0 0 2304 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (62)

R =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 9 0 0 0
0 0 0 .0001 0 0
0 0 0 0 .0001 0
0 0 0 0 0 .0001

 (63)

14 Simulation results
Sensor data from a commercial small Uninhabited Aerial Vehicle flown over an agriculture field on
the morning of October 22, 2014 have been used here as documented in [9]. The sampling rate of
the IMU is 34 Hz, GPS is 8Hz and the filter is run at 100 Hz.

14.1 Simulator plots
11, 12, 13 and 14 are the plots as obtained by IMU simulator vs true values

14.2 Alignment method 1
16, 17 and 18 shows the results using alignment method 1. 15 shows the evolution of close loop
(using Kalman filter) and open loop (only INS solution) eigenvalues of the system. As can be seen
Kalman filter stabilizes the system.

14.3 Alignment method 2
20, 21 and 22 shows the results using alignment method 1. 19 shows the evolution of close loop
(using Kalman filter) and open loop (only INS solution) eigenvalues of the system. As can be seen
Kalman filter stabilizes the system.

14.4 Alignment method 3
24, 25 and 26 shows the results using alignment method 1. 23 shows the evolution of close loop
(using Kalman filter) and open loop (only INS solution) eigenvalues of the system. As can be seen
Kalman filter stabilizes the system.

25

Figure 11: Gyroscope simulation, m/s stands for measurements

Figure 12: Gyroscope simulation for yaw axis

26

Figure 13: Accelerometer simulation

Figure 14: Accelerometer simulation for yaw axis

27

Figure 15: Alignment Method 1 : Eigenvalues

Figure 16: Alignment Method 1 : Attitude

Figure 17: Alignment Method 1 : Position

28

Figure 18: Alignment Method 1 : Velocity

Figure 19: Alignment Method 2 : Eigenvalues

29

Figure 20: Alignment Method 2 : Attitude

Figure 21: Alignment Method 2 : Position

30

Figure 22: Alignment Method 2 : Velocity

Figure 23: Alignment Method 3 : Eigenvalues

31

Figure 24: Alignment Method 3 : Attitude

Figure 25: Alignment Method 3 : Position

32

Figure 26: Alignment Method 3 : Velocity

33

References
[1] Braun, B.(216) High Performance Kalman Filter Tuning for Integrated Naviga-

tion Systems. Thesis dissertation, TU Munich. http://www.fsd.mw.tum.de/research/
sensors-data-fusion-and-navigation/

[2] S. Chattaraj, A. Mukherjee, and S. K. Chaudhuri (2013). Transfer Alignment Problem: Al-
gorithms and Design Issues. ISSN 20751087, Gyroscopy and Navigation, 2013, Vol. 4, No. 3,
pp. 130–146. c© Pleiades Publishing, Ltd..

[3] Agnar Sveinsson (2012). INS/GPS Error Analysis And Integration. June 2012. M.Sc Research
Thesis. School of Science and Engineering Reykjavik University. Iceland

[4] Britting, K. R. (1971).Inertial Navigation Systems Analysis.. 111 River Street, Hoboken: John
Wiley Sons, Inc.

[5] Christensen, R., & Fogh, N. (2008).Christensen, R., & Fogh, N. (2008). Master’s thesis,
Aalborg University, Aalborg, Denmark.

[6] Thomas Brunner, Jean-Philippe Lauffenburger, Sébastien Changey and Michel Basset (2015).
Magnetometer-Augmented IMU Simulator: In-Depth Elaboration. sensors ISSN 1424-8220.
Article

[7] Yan G., Wang J., Zhou X. (2015) High-Precision Simulator for Strapdown Inertial Navigation
Systems Based on Real Dynamics from GNSS and IMU Integration In: Sun J., Liu J., Fan
S., Lu X. (eds) China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III.
Lecture Notes in Electrical Engineering, vol 342. Springer, Berlin, Heidelberg

[8] Richard Giroux, Richard Gourdeau, Rene Jr. Landry (2005). Extended Kalman filter imple-
mentation for low-cost INS/GPS Integration in a Fast Prototyping Environment. 16th Sym-
posium on Navigation of the Canadian Navigation Society Toronto, Canada, 26-27 April 2005

[9] Mokhtarzadeh, Hamid; Colten, Todd. (2015). Small UAV Position and Attitude, Raw Sensor,
and Aerial Imagery Data Collected over Farm Field with Surveyed Markers. Retrieved from
the Data Repository for the University of Minnesota, http://dx.doi.org/10.13020/D6BC7Z

34

http://www.fsd.mw.tum.de/research/sensors-data-fusion-and-navigation/
http://www.fsd.mw.tum.de/research/sensors-data-fusion-and-navigation/

	Synopsis
	Requirements
	Specifications
	Design and Implementation
	Fusion with aiding sensors
	Parameter Tuning

	Master Schedule
	Formulation of Self Alignment Problem
	Mathematical Notations
	ECIF
	ECEF
	Navigation Frame
	Body Frame

	Symbols

	Inertial Navigation
	Geometry of the earth
	Transformation
	Rotation Rate
	Inertial Navigation Equations
	Position Equations
	Velocity Equations
	Attitude Equations

	Gravity Model
	Navigation Output

	Model for Simulator
	Modeling Accelerometer output
	Modeling Gyro Output
	Modeling Magnetometer output

	INS Error Model
	Perturbation Analysis
	Position Error Equation
	Velocity Error Equation
	Attitude Error Equation

	Continuous Error Model
	INS/GPS Integration
	Loosely Coupled Integration

	Indirect Kalman Filter Configuration c15
	Feedback Mode
	Description of the fusion algorithm architecture

	Initialization
	TRIAD : Orientation Angle
	Alignment method 1
	Alignment method 2
	Alignment method 3

	Implementation

	Documentation for the MATLAB Code
	SIMULATOR (simulator.m)
	Function files used by SIMULATOR

	Main Code (main.m)
	Measurement Model
	Alignment (alignment_1.m)
	Alignment (alignment_2.m)
	Alignment (alignment_3.m)
	IMU Outputs
	Extended Kalman Filter
	Implementation of the Kalman Filter
	Tuning Parameters

	Simulation results
	Simulator plots
	Alignment method 1
	Alignment method 2
	Alignment method 3

