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Guaranteed Encapsulation of Targets with Unknown
Motion by a Minimalist Robotic Swarm

Himani Sinhmar, Hadas Kress-Gazit

Abstract—We present a decentralized control algorithm for
a robotic swarm given the task of encapsulating static and
moving targets in a bounded unknown environment. We consider
minimalist robots without memory, explicit communication, or lo-
calization information. The state-of-the-art approaches generally
assume that the robots in the swarm are able to detect the relative
position of neighboring robots and targets in order to provide
convergence guarantees. In this work, we propose a novel control
law for the guaranteed encapsulation of static and moving targets
while avoiding all collisions, when the robots do not know the
exact relative location of any robot or target in the environment.
We make use of the Lyapunov stability theory to prove the
convergence of our control algorithm and provide bounds on
the ratio between the target and robot speeds. Furthermore, our
proposed approach is able to provide stochastic guarantees under
the bounds that we determine on task parameters for scenarios
where a target moves faster than a robot. Finally, we present
an analysis of how the emergent behavior changes with different
parameters of the task and noisy sensor readings.

Index Terms—Collision avoidance, Decentralized control, Min-
imalist robot swarm, Lyapunov stability, Target tracking

I. INTRODUCTION

TYPICAL approaches to swarm robotics propose simple
local behaviors for large numbers of simple robots such

that they collectively accomplish a complex task; many ap-
proaches study the properties of the emergent behavior [1]–[3].
In this work, we consider a swarm consisting of homogeneous
robots which are minimalist; they have no memory, cannot
broadcast or receive location information from their neighbors
and are unable to plan ahead. Minimalistic robotic swarms [4],
[5] have a number of applications, ranging from nanomedicine
to underwater monitoring and surveillance [6], [7], where
robots might not be able to efficiently communicate with a
central controller or with each other, and might not have the
ability to self localize. For example, in an underwater mission,
communication may be limited to acoustic signals that are
sensitive to interference and lead to errors in the relative
positioning of nearby entities. Similarly, in nano-medicine
applications, a swarm of micro-robots may be required to
search, encapsulate, and destroy tumors by following a chem-
ical gradient [8].

In this paper, we focus on the problem of encapsulating
multiple targets, which are moving in unknown motion
patterns, by a minimalist robotic swarm. A robot in the
swarm has no knowledge of the exact relative location of
nearby robots, targets, or the boundary of the environment.
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This work extends our previous work on encapsulating static
targets [5] by addressing moving targets. We develop an
orbiting behavior for robots to encapsulate the targets, in
addition to searching for targets and avoiding collisions
within the swarm, as in [5]. We compare the efficiency of
our previous algorithm with the one introduced in this paper.
Furthermore, we also show the behavior of our algorithm
when applied to non-circular robots.

Related Work: There has been extensive work on developing
various techniques to localize and track a moving target
while ensuring collision avoidance [9]–[14]. In [15], authors
introduced a motion planning strategy for a single robot based
on velocity pursuit to intercept a target moving with unknown
maneuvers. For target tracking using a multi-robot system,
most approaches use artificial potential fields to design a
controller consisting of a virtual attraction force to move
towards a target and a repulsion force to avoid collision with
obstacles [16]. Another widely used approach to guarantee
collision avoidance with dynamic obstacles is using a limit
cycle method [17]. The authors of [18] introduced a hybrid
approach where they instead used the limit cycle method to
encircle a moving target using a swarm of holonomic robots,
and artificial potential fields for collision avoidance. Since the
limit cycle method, either for surrounding a target or avoiding
collision with obstacles, requires the exact knowledge of the
neighbor’s relative position information, we cannot use it for
our minimalist robotic swarm.

Pursuit-evasion games [19]–[21] provide guarantees for
catching a faster-moving evader by constructing an encircling
formation of pursuers composed of a series of Apollonius
circles around a target and slowly closing the escape paths
of the evader. In this approach, an evader is captured if a
pursuer meets the evader at the same point at the same time.
Most of the pursuit-evasion methods in the literature assume
knowledge of the target’s motion model. In this work, we do
not assume such knowledge.

Existing research [22] in “hunting” of dynamic targets
generally makes use of communication within the team and
formation-keeping control strategies, while approaching the
target, to ensure that all of the escaping routes of the targets
are occupied by the robots. Work in [23] developed a leader-
follower strategy based on the behavior of wolves to hunt
a randomly moving target with unexpected behaviors. The
authors of [24] proposed a limit cycle based algorithm using
a neural oscillator to surround a target moving with unknown
but constant velocity. The authors of [25] utilized rule-based
mechanisms using only relative positions of neighbors and no
direct communication within the swarm for surrounding an
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escaping target by introducing a circulating behavior in the
swarm.

Recent research in colloidal swarms has shown the capture
of multiple randomly moving targets using self-organization
control schemes. In [26], the authors designed a stochastic
centralized controller for an intelligent colloidal micro-robotic
swarm to capture multiple Brownian targets in a maze. In
[27], the authors show via simulations, the feedback-controlled
reconfigurability of colloidal particles that act as a swarm
capable of capturing and transporting microscopic Brownian
cargo.

To implement a distributed approach of searching and
encircling targets in an inexpensive and efficient way, in
[28] the authors developed a new dual-rotating proximity
sensor to obtain relative position information of neighbors for
tracking multiple targets with a minimalist swarm. Authors
of [29] proposed a scheme to estimate the global quantities
required by the controller in a decentralized way using only
local information exchange between robots for the guaranteed
encirclement of a 2D or 3D target.

While the above approaches successfully solve the target
encirclement while avoiding collisions, most of them rely
on the assumption that robots have knowledge of the exact
relative location of both their neighbors and the target.
Furthermore, it is a common assumption that the average
speed of the agents in the swarm is greater than that of the
moving target to guarantee encapsulation [30]. In contrast,
in this work, we provide guarantees on the encapsulation of
dynamic targets without the requirement of accurate (relative)
location information and without direct communication within
the swarm.

Contributions: This paper’s contributions are: (i) a discrete-
time decentralized control law for a minimalist robotic swarm
that guarantees the encapsulation of dynamic targets, for
different target motion models, without accurate detection of
the relative location of either the targets or neighboring robots
under certain bounds, (ii) sensor-placement dependent bounds
on the ratio between the target and robot speeds to guarantee
encapsulation, (iii) proof of stochastic convergence of our
control law for scenarios when a target is moving faster
than a robot, and (iv) simulations and analysis of emergent
behavior of the swarm in the presence of sensor noise and
different task parameters.

II. DEFINITIONS

In this section, we provide definitions from [5] that we use
throughout the paper.

Environment: We consider a 2D bounded environment
E ⊆ R2. The environment has a fixed global frame I.

Robot: We model a robot, R = (cr, γr, rr, p, Z), as a disk
of radius rr centered at cr ∈ E with heading γr ∈ S. The
shape of a robot does not affect the analysis presented in the
paper since the robot can always be circumscribed by a circle
of radius rr. The kinematics of a robot is given by Eq. (1),

which is a typical model for a differential drive robot. At each
time step T, the robot is controlled in a turn-then-move scheme
with control inputs θr ∈ S and dr ∈ R+. The maximum step-
size of a robot is dmax

r .

γr,T = γr,T−1 + θr

cr,T = cr,T−1 + dr[cosγr,T sinγr,T ] (1)

Each robot is reactive, memoryless, has no knowledge of
the relative locations of other robots or targets, and cannot
communicate with its neighbors. A robot has p isotropic
sensors arranged on its boundary such that ϕk ∀k ∈ {1 · · · p}
is the angle between the kth sensor and the robot’s heading
direction. Z is the set of measurements from all sensors on a
robot.

Signal Sources and Sensors: We consider three types of
signal-emitting sources present in the environment that a robot
can detect: sg from a point source at the center of a target,
sr from a point source at the center of a robot, and se from
a line source present on the entire environment boundary. For
clarity in notation, we hereby denote the signal set {sg, sr, se}
by {g, r, e}.

The strength of any signal s ∈ {g, r, e} located at a distance
d from a signal source is given by the function Bs(d). The
influence distance of a source is limited to βs, such that
Bs(d) = 0 ∀d ≥ βs. Let Nk

s be the set of all the sources
of type s in the sensing range of the kth sensor and dkj be the
distance of this sensor from a source j ∈ Nk

s . Then the sensor
reading zks =

∑
j∈Nk

s
Bs(d

k
j ) is the sum of signal strengths

from all sources in Nk
s . This summation becomes an integral

over the boundary segment for a line source present inside the
influence region βe.

The tuple (zkg , z
k
r , z

k
e ) corresponds to the measurements of

the kth sensor. Let Zg = {z1g · · · zpg}, Zr = {z1r · · · zpr} and
Ze = {z1e · · · zpe}, then the measurement set is Z = Zg ∪
Zr ∪ Ze. We define rsafes ∀s ∈ {g, r, e} as the user-specified
minimum safety distance that a robot must maintain from a
source at all times.

The isotropic source-sensor model in this paper is inspired
by sensing constraints ranging from LED-photodiode imple-
mentations in multi-robotic systems [31] to nanomedicine
applications where LC-based microscopic sensors can be used
for guiding chemotaxis [32] to source localization in radioac-
tive nuclear plants [33].

III. PROBLEM FORMULATION

We model a target g = (cg, rg) as a disk of radius rg
centered at cg ∈ E. G is the set of all targets contained in
E. The kinematics of a target is given in Eq. (2). At any time
step T , dg ∈ R+ and θg ∈ S are the distance moved and angle
turned by the target, and γg,T ∈ S is the target heading.

γg,T = γg,T−1 + θg

cg,T = cg,T−1 + dg[cosγg,T sinγg,T ] (2)

The maximum distance that a target can move in a time step
is limited to dmax

g .
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Target Motion Models: In this paper, we design controllers
and analyze the swarm behavior for different types of target
motion models. A target can exhibit one of the following
motions:

1) Target moves randomly such that at any time step T ,
γg,T ∈ [0 2π), dg ∈ [0 dmax

g ] and cg,T ∈ E.
2) Target moves randomly as in motion model 1 until a

robot is in its escape domain = (cg, rescapeg ) of radius
rescapeg centered at cg , in which case the target chooses a
heading direction to escape from all the robots that sat-
isfies ∥cg,T − cr,T ∥ ≤ rescapeg , and moves the maximum
possible step-size dg .

3) Target follows an unknown motion pattern until a robot
satisfies ∥cg,T − cr,T ∥ ≤ rescapeg , in which case it
chooses a heading direction to escape nearby robots.

Target Encapsulation: For each target g ∈ G, we define an
encapsulation ring Ag,T = (cg,T , r

safe
g , rencapg ) of inner radius

rsafeg and outer radius rencapg centered at cg,T . A robot R is
considered to be in Ag,T if rsafeg < ∥cr,T − cg,T ∥ ≤ rencapg .
A target is encapsulated if the total number of robots present
in the encapsulation ring is ng , which is a user-specified
input, as shown in Fig. 1.

Fig. 1: A target is encapsulated if ng robots are present
simultaneously in the encapsulation ring while maintaining at
least a distance of rsafer from each other.

Problem statement: Consider a bounded environment E ⊆
R2 with m dynamic targets where the initial distribution of
the robots and targets is arbitrary. Given the total number of
sensors p on a robot, the user-provided safe distance rsafes

∀s ∈ {g, r, e}, the encapsulation ring Ag , and the number
of robots ng needed to encapsulate each target g such that
the total number of robots n ≥

∑
g∈G ng , our objective is to

find a real-time decentralized control law for encapsulating all
targets while ensuring safety distances are always maintained.
We make the following assumptions about the environment
and the system:

Assumption 1. The sensors are arranged on a robot such
that when a robot’s center is rsafes away from a source s,
at least one sensor is in the influence region of the source.
For ease of exposition, we consider circular robots with a
symmetric placement of sensors to explain our algorithm, and

show in simulations how asymmetric sensor placements and
non-circular robots affect swarm behavior.

Assumption 2. The distance between any two moving targets
is greater than (2βg +2rr). That is, a robot can sense at most
one target at a time.

Assumption 3. We constrain a target to maintain a minimum
distance of (rencapg + rsafee + dmax

r ) from the environment
boundary. This ensures that robots will be able to encapsulate
the target without colliding with the environment boundary.

Assumption 4. We place no restriction on the target’s knowl-
edge of the environment; it may be able to perfectly sense
the relative location of any robot present in its user-specified
escape domain, rescapeg . However, if a target is encapsulated,
we assume it emits a single burst of a shut-off signal and stops
emitting any signal subsequently. The influence distance of this
signal is limited to Ag , and we assume that thereafter both
the robots within the encapsulation ring and the target stop
moving, i.e. dr = 0 and dg = 0, respectively. This assumption
emulates applications in nano-medicine, for example, encap-
sulating and eventually destroying a tumor or localizing and
shutting off a chemical source in plants.

Assumption 5. The signal strength Bs strictly decreases with
the radial distance d from a source and the inverse of the signal
function Bs(d) exists and is known to the robots.

IV. APPROACH

Our strategy for designing a local control law is based on
geometry and the relative kinematics of the interaction of a
robot with its neighboring robots and a dynamic target. We
extend our previous work [5] where we only considered static
targets; a robot’s behavior there was to either move randomly
in the bounded environment when it does not sense any target,
or to move towards a target if sensing one while ensuring
safety. Here, we introduce an additional robot behavior of
orbital encirclement of a target, inspired by [17]. As we show
in Section V, this behavior ensures the encapsulation of an
escaping target. In Section IV-A we describe virtual sources as
defined in [5] and use them to under-approximate the relative
distance between a source and the robot’s center as a function
of the sensor placement. In Section IV-B we find the bounds
on control parameters (dr and θr) for a robot to ensure that
it maintains rsafes distance from a source s ∈ {g, r, e}. In
Section IV-C we introduce the concept of orbital encirclement
of a moving target; we provide a summary of the overall
reactive control law for a robot in the swarm in Section IV-D.

A. Virtual Source

Since we assume a robot is equipped with isotropic sensors,
a sensor measurement corresponds to the aggregated signal
strength from all the nearby sources. Hence, the same mea-
surement could correspond to a single source nearby or a
cluster of sources further away. Therefore, for each sensor
reading, zks ∀s ∈ {g, r, e}, we define a virtual source on
a circle centered at the sensor k as shown in Fig. 2. It is
shown in [5] that the closest possible location of the virtual
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Fig. 2: Virtual source for the kth sensor [5].

source with respect to the robot’s center is given by Eq. (3).
Furthermore, the range of possible directions of the location of
the virtual source with respect to the robot’s center is restricted
to [ϕk − π/p, ϕk + π/p] for symmetric sensor placement.

ds = rrcos(π/p) +

√
(dks)

2 − r2rsin
2(π/p) (3)

For asymmetric sensor placement, we replace π/p with half of
the maximum angle that the kth sensor makes with either of
its adjacent sensors. Similarly, for robots that are not circular
in shape, we replace rr by the distance between the kth sensor
and the robot’s center in the above equation. We can see in (3)
that as p → ∞, ds → dks + rr. That is, the error in locating
the virtual source is dependent on the total sensors on a robot.

B. Collision Avoidance

We use the technique introduced in [5] for collision avoid-
ance with nearby robots and the environment boundary. At
each time step, the robot estimates the relative distance be-
tween its center and the nearby sources using Eq. (3) for the
sensor with the maximum sensor reading zks ∀s ∈ {g, r, e}. If
this distance is less than or equal to (rsafes +dmax

s ), the collision
avoidance behavior is triggered for this robot to ensure safety.

We have shown in [5] that to avoid collisions with static
obstacles (such as environment boundary), the robot’s heading
direction θr must be chosen from the angular range given by
Eq. (4).

Θavo
e = [ϕk + π/p+ π/2, ϕk − π/p+ 3π/2] (4)

Whereas to avoid the neighboring moving robots, the distance
dr that a robot moves at time step T in a given heading
direction γr,T must be chosen such that at T + 1 it maintains
at least a distance of rsafer from the closest neighboring robot.
As shown in Fig. 3, let k and l be the indices of the sensors
closest to the intended heading direction γr at time T and dkr
and dlr are their radii of virtual sources respectively such that
dkr > dlr. Then, we can compute the bounds on the step-size
dr that the robot can take in the heading direction γr,T using
Eq. (5).

0 ≤ dr ≤ rrcos(ϕ
l − θr)

+

√
(dlr − rsafer − dmax

r )2 − r2rsin
2(ϕl − θr) (5)

To ensure that two robots never deadlock, the bounds on
the maximum step size a robot can take, and the influence

Fig. 3: Computing dr such that collision is avoided with nearby
moving robots [5].

region of a robot’s source, are given by Eq. (6) and Eq. (7),
respectively. The proof is detailed in Lemma V.3 of [5].

dmax
r <

rsafer + rrcos(π/p)

2

−
√
(rsafer )2 + r2r − 2rrrsafer cos(π/p)

2
(6)

√
(rsafer )2 + r2r − 2rrrsafer cos(π/p) + 2dmax

r < βr

< rsafer + rrcos(π/p) (7)

C. Encirclement of a Target

In [5], our approach to encapsulate a static target, was for a
robot to either move towards the target or move away from an
obstacle between itself and the target in the direction of the
sensor receiving the minimum reading from nearby moving
robots. However, in order to surround a dynamic target, the
behavior of a robot should be such that the swarm is able to
disperse around the target in order to block off its escaping
paths. Since we consider minimalist robots that can neither
communicate with their neighbors nor know their exact relative
position, we can not make use of formation control strategies,
such as [18], [24].

Consider a scenario where all the robots in the swarm start
on one side of a target. Then, for a swarm to disperse around a
target, it is necessary that an individual robot be able to catch
up with the escaping target, and once the robot reaches the
encapsulation ring, it should be able to encircle the target so
that the target is prevented from escaping.

To ensure encapsulation, we define primary and secondary
orbits around each target, as shown in Fig. 4. For each
orbit, we define a tie-breaking orbital rotation which can
be either clockwise (denoted by a value of -1) or counter-
clockwise (denoted by a value of 1). The primary orbit,
Or0 = (cg,T , Orinner0 , Orouter0 ,−1) is an annular ring centered
at cg,T with an inner radius of Orinner0 ≥ rsafeg + dmax

g , an
outer radius Orouter0 = rencapg and a clockwise orbital rotation
(chosen arbitrarily). Let w be the width of a secondary orbit,
then an ith secondary orbit is given by, Ori = (cg,T , Orouter0 +
(i − 1)w,Orouter0 + (i)w, (−1)i−1), ∀i > 0. We consider a
robot to be in ith orbit if, Orinneri < ∥cg,T − cr,T ∥ ≤ Orouteri .
Each robot in the swarm computes its current orbit using
its estimate of ∥cg,T − cr,T ∥. At time-step T , let Ori be the
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Fig. 4: Primary (purple ring) and secondary (cyan rings)
orbits around a target, and the lower bound on the target’s
escape domain (red circle). A robot moves either clockwise
or counter-clockwise in an orbit depending on its neighbors.
The solid arrows denote the tie-breaking rotation for an orbit.

current orbit as estimated by a robot, then its control consists
of one of the following behaviors:

1) if i > 0, the robot moves towards the target in a
heading direction chosen from the line of sight angular
range as estimated from the virtual source (ΘLOS

g ) while
maintaining a safe distance from nearby robots.

2) else if i > 0 and the robot cannot move a non-zero
distance towards the target, it moves tangentially in its
current orbit while maintaining a safe distance from
nearby robots. The direction of the tangent is chosen
such that it maximizes the possible step-size dr. In case
of symmetry, the robot moves in the orbital rotation of
the ith orbit.

3) else if i > 0 and the robot can neither move in a direc-
tion from ΘLOS

g nor tangential to the orbit, it chooses a
direction of motion that maximizes the possible step-size
dr.

4) else if i = 0, the robot moves tangentially in its current
orbit while maintaining a safe distance from the target.

5) else if the relative distance between the target and a
robot is less than or equal to Orinner0 , it moves away
from the target.

6) else the robot performs a simple random walk while
avoiding nearby moving robots.

In general, a robot moves toward the target until it reaches
the primary orbit. If other robots are present between itself
and the target, the robot moves tangentially in its current orbit
until it can move toward the target. All the robots that place
themselves in the primary orbit constantly move tangentially
and eventually close off the target’s escape routes. The width
of a secondary orbit, w, must be less than βr, so that a robot’s
neighbors in adjacent orbits lie within its sensing range. This
ensures that a robot doesn’t move towards a target when it
senses other robots in the front and instead moves tangentially
in its current orbit. Fig. 5 depicts how robots move in different
orbits around a target, over time, while avoiding nearby robots.

Now, using the sensor readings and their corresponding
virtual sources, we find the set of directions that a robot
needs to choose from to move towards a target, away from
a target, or tangentially in an orbit. Let k be the index of the
sensor such that zkg > zlg,∀l ̸= k. Here we have ignored

Fig. 5: Motion of robots in different orbits over four consecu-
tive time-steps. Dotted grey robots denote the location of the
robots in the previous time step.

the unlikely scenario where two sensors receive the same
maximum intensity from a target. Then the angular range,
ΘLOS

g , for the possible location of the target with respect to
the robot’s center is given by Eq. (8).

ΘLOS
g = [ϕk − π/p, ϕk + π/p] (8)

The angular range, Θavo
g (Eq. (9)), to move away from the

target can be derived in a similar fashion to Eq. (4).

Θavo
g = [ϕk + π/p+ π/2, ϕk − π/p+ 3π/2] (9)

The angular range to move tangentially in an orbit in a
clockwise or counter-clockwise direction is given by Eq. (10)
and Eq. (11), respectively, where we define Θtan

g = Θtan,+1
g ∪

Θtan,−1
g .

Θtan,−1
g = [ϕk − π/p+ π/2, ϕk + π/p+ π/2] (10)

Θtan,+1
g = [ϕk − π/p+ 3π/2, ϕk + π/p+ 3π/2] (11)

Fig. 6 shows the different angular range sets for a target-robot
interaction.

Fig. 6: The angular range set for a target-robot interaction.
The robot is equipped with 5 sensors placed asymmetrically.
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It is worth mentioning that for noiseless sensors, if zk−1
g >

zk+1
g then ΘLOS

g = [ϕk − π/p, ϕk]. This results in a more
accurate estimation of the location of a target and reduces the
angular resolution error by half. The estimation of Θtan

g and
Θavo

g also changes accordingly.
As shown in our previous work [5], a heading direction

in the angular ranges ΘLOS
g and Θavo

g is guaranteed to make
a robot move towards the target and away from the target,
respectively. In contrast, a robot might end up moving towards
or away from the target when it moves tangentially in an orbit.
Since secondary orbits are at least at a distance of Orouter0

from a target, a robot moving tangentially in these orbits will
always maintain a safe distance from the target. However, if
a robot is moving tangentially in the primary orbit, we need
to make sure that it maintains at least a distance of Orinner0

from the target after moving dr units in the intended heading
direction γr,T such that θr ∈ Θtan

g .
In Fig. 7, we can see that at T + 1, the closest possible

location of the target is at S∈ I. That is, if the heading
direction θr /∈ ΘLOS

g , the closest possible location of the target
with respect to the robot’s center at T +1 would be along one
of the extremes of the angular range ΘLOS

g .

Fig. 7: The distance dr that the robot can move in the intended
heading is computed using the geometry of ∆Scr,T cr,T+1

To ensure safety, ∥cr,T+1 − S∥ ≥ Orinner0 . Using the cosine
rule of triangle for △Scr,T cr,T+1, the bounds on the control
parameter dr can be computed using the quadratic inequality
given by Eq. (12) .

d2r − 2dr ∥cr,T − S∥ cos(∠Scr,T cr,T+1)

+ ∥cr,T − S∥2 ≥ (Orinner0 )2 (12)

In the above inequality, ∥cr,T − S∥ is under-approximated by
the robot using the virtual source, as described in Section IV-A.

D. Local Control Law

Algorithm 1 encodes the local reactive control law for
a robot in the swarm that is tasked with searching and
encapsulating targets while avoiding collisions.

The algorithm describes the computation that happened
at each time step T . Each robot in the swarm has: Z–the
tuple of sensor measurements, Bs–the function describing the
signal source strength as a function of radial distance from
s ∈ {g, r, e}, the maximum step-size of a robot dmax

r and
a target dmax

g , the user-specified safety constraints for each
source rsafes , and the set orbits defined by an inner and
outer radius of each orbit.

Algorithm 1: Control algorithm for a robot

Input : Z, Bs, p, dmax
r , dmax

g , rsafes , ∀s ∈ {r, g, e},
orbits Ori≥0

Output: dr, θr
// compute Θavo

e , ΘLOS
g , Θavo

g , Θtan
g ,

currentOrbit
1 if DistToEnvBound≤ rsafee + dmax

r then
2 θr = argmax

θ∈Θavo
e

DistAvoRob(Zr, Br, θ, r
safe
r )

3 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

4 else if max(Zg) = 0 then
5 θr = randsample([0, 2π))
6 dr = DistAvoRob(Zr, Br, θr, r

safe
r )

7 if dr = 0 then
8 k = argmin(Zr)
9 θr = ϕk

10 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

11 else if DistToTar< Orinner0 then
12 θr = argmax

θ∈Θavo
g

DistAvoRob(Zr, Br, θ, r
safe
r )

13 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

14 dreqr =
∥∥DistToTar −Orinner0

∥∥
15 if dr > dreqr then
16 dr = dreqr

17 else if currentOrbit = Or0 then
18 θr = argmax

θ∈Θtan
g

min
(
DistAvoRob(Zr, Br, θ, r

safe
r ),

DistAvoTar (Zg, Bg,Θ
LOS
g , θ)

)
19 dr = DistAvoRob(Zr, Br, θr, r

safe
r )

20 else
21 θr = argmax

θ∈ΘLOS
g

DistAvoRob(Zr, Br, θ, r
safe
r )

22 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

23 if dr = 0 then
24 θr = argmax

θ∈Θtan
g

DistAvoRob(Zr, Br, θ, r
safe
r )

25 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

26 if dr = 0 then
27 k = argmin(Zr)
28 θr = ϕk

29 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

The control synthesis proceeds as follows: First, the robot
estimates its distance, DistToEnvBound (Section IV-A),
from the environment boundary. If the robot is too close to the
boundary, it computes the allowed set of heading directions,
Θavo

e . The direction of motion, θr is then chosen such that
the robot moves away from the boundary with a maximum
possible step size, dr while avoiding nearby robots (lines 1-2).
The function DistAvoRob computes this maximum possible
value of dr from Eq. (5), as described in Section IV-B.

Once the robot is at a safe distance from the boundary,
it then estimates the relative distance DistToTar (Sec-
tion IV-A ) from a target. If no target is sensed the robot
performs a random walk while maintaining a safe distance
from nearby robots (lines 4-10). If, on the other hand, the
robot is inside the influence region of a target, it computes
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its current orbit, currentOrbit based on the estimated
DistToTar and the input orbits. If the robot estimates
that the relative distance between itself and the target is less
than Orinner0 , it computes the set of allowed heading direction,
Θavo

g , and chooses a direction of motion from this set while
maximizing the step size to avoid nearby robots (lines 11-
16). The distance to move away from a target is capped at
dreqr =

∥∥DistToTar−Orinner0

∥∥ (lines 15-16) to ensure that
the robot doesn’t move outside the primary orbit.

If the robot is in the primary orbit (line 17), it moves
tangentially to the orbit Or0 (heading direction chosen from
the computed set Θtan

g ) with a step size dr such that it
maintains a safe distance from the nearby robots and the
target (lines 18-19). The function DistAvoTar computes the
maximum possible value of dr from Eq. (12), as described in
Section IV-C.

When a robot is in a secondary orbit, Ori>0 it chooses
a heading direction from the set ΘLOS

g to move towards the
target while avoiding nearby robots (line 21-22). In case the
robot cannot find a direction of motion to move a non-zero
distance toward the target (line 23), it either moves a non-zero
distance tangentially in its current orbit (lines 24-25) or moves
a safe distance in a heading direction based on the reading
from the sensor receiving the minimum signal strength zkr ,
i.e. the direction where the virtual source corresponding to
other robots is the farthest (lines 26-29).

A robot’s local control, as summarized in Algorithm 1, is
agnostic to the motion type of the targets. This, together with
our convergence guarantees in the following section, implies
that our algorithm guarantees the encapsulation of multiple
targets moving in the bounded environment with different
types of motion models, as described in Section III.

V. CONVERGENCE GUARANTEES

We use the Lyapunov stability theory to provide guarantees
on the emergent behavior of the swarm. In this section, for
clarity, we consider circular robots with noiseless sensors. In
practice, the desired behavior emerges for non-circular robots
as well, which we demonstrate in simulations in Section VI.

Lemma V.1. [34] A disc robot with a non-zero radius
performing a random walk in a bounded 2D environment will
almost surely approach the exploration of the entire area as
time approaches infinity.

Corollary V.1.1. We consider a robot to be in the influence
region of a target at time step T when ∥cg,T − cr,T ∥ < βg+rr.
From Lemma V.1 we can say with a probability of 1 that
a robot performing a random walk will enter the influence
region, βg > rr, of a static target as time goes to infinity. In the
case of a dynamic target, we assume that the influence region
of a target is large enough to ensure that a robot performing
a random walk will enter its influence region within a finite
time.

Lemma V.2. For any arbitrary initial condition such that a
robot is at least rsafeg away from a target, a necessary condition
to ensure a collision-free target’s motion is that the escape

radius of the target, rescapeg ≥ rsafeg + dmax
g and the inner

radius of the primary orbit, Orinner0 ≥ rsafeg + dmax
g

Proof. The lower bound on rescapeg ensures that a target gets
enough margin to escape an approaching robot. As described
in Section IV-C, a robot’s behavior is such that it moves
away from the target if the robot crosses the inner ring,
Orinner0 , of the primary orbit. Hence the above lower bound on
Orinner0 ensures that collision avoidance behavior for a robot
is triggered before the distance between a target and a robot
becomes rsafeg .

Lemma V.3. For any arbitrary initial condition such that a
robot is at least rsafeg away from a target the following are the
necessary conditions to ensure a target’s encapsulation:

1) the outer radius of the encapsulation ring Ag satisfies

rencapg ≥ dmax
r + rr

+
√
(Orinner0 )2 + r2r − 2rrOrinner0 cos(π/p) (13)

2) the number of robots ng specified for encapsulation
satisfies,

ng ≤ n0 =
2π

cos−1

(
1− (βr+rr)2

2(rencapg )2

) (14)

Proof. Each robot’s estimate of the relative distance from
a target depends on the sensor with the maximum reading,
max(Zg). Given that a virtual source is always either closer
or at the radial location of an actual source, it is possible
that even if a robot is present in the primary orbit, the robot
estimates itself to be present at a relative distance of less
than Orinner0 with respect to the target. This will trigger the
collision avoidance behavior for the robot and it will move
away from the target. To successfully encapsulate a target g,
it is required that the outer radius of the encapsulation ring,
rencapg incorporate the robot with the worst possible estimate
of the target’s location. This will ensure that the robot remains
in the primary orbit even after being over-cautious in moving
away from the target.

At each time step, a robot chooses its control parame-
ters such that it maintains at least a distance of Orinner0

from a target, that is, ∥cg,T − cr,T ∥ ≥ Orinner0 . Since
Orinner0 is defined between a robot’s center and the tar-
get, we set ds = Orinner0 in Eq. (3) to obtain dkg =√
(Orinner0 )2 + r2r − 2rrOrinner0 cos(π/p). A robot will start

to move away from the target when max(Zg) ≥ Bg(d
k
g).

At this point, the upper bound on ∥cg,T − cr,T ∥ is given by
Eq. (15). We can see that as p→ ∞, ∥cg,T − cr,T ∥ → Orinner0

and for a finite p, collision avoidance behavior is triggered
before the robot is at a distance of Orinner0 from the target.

∥cg,T − cr,T ∥ ≤ rr+
√
(Orinner0 )2 + r2r − 2rrOrinner0 cos(π/p)

(15)
For asymmetric sensor placement, we replace π/p with half
of the maximum angle between two adjacent sensors on the
robot.
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To incorporate the robot with the worst estimate of a
target’s location, we set a lower bound on the outer ra-
dius of the encapsulation ring using Eq. (15) as rencapg ≥
rr+

√
(Orinner0 )2 + r2r − 2rrOrinner0 cos(π/p). Since the robot

may chatter in the encapsulation ring due to constant attraction
and repulsion from the target and nearby robots, we add dmax

r

to the lower bound on rencapg (condition 1). This will ensure
that a robot remains in the encapsulation ring when there are
other robots nearby.

Furthermore, the maximum number of robots that can be
specified for target encapsulation (condition 2) is bounded by
the total number of robots that can be physically placed in
the encapsulation ring such that the encapsulating robots are
outside each other’s influence region to ensure no chattering
that can be caused by repulsion from each other. When ng >
n0 a dynamic equilibrium exists around a target such that there
are always almost n0 robots present in the primary orbit [5].

As described in Section III, we consider three types of mo-
tion patterns that a target can exhibit. For each of these target
motion patterns, we provide guarantees for liveness (eventual
encapsulation) based on the Lyapunov stability theory and
stochastic analysis (Lemmas V.4 - V.6).

Lemma V.4. Consider a target g ∈ G moving randomly in the
bounded environment until it senses any robot in its escape
domain (as described by motion model 2 in Section III). If,

1) the maximum step size of the target, dmax
g ≤ λdmax

r

where

λ = min

(
π

2
,

α

sin(π − α)

)
sinφ

φ
cosφ

α = cos−1

(
1− (βr + rr)

2

2(rescapeg )2

)
φ =

max(ϕk − ϕk+1)

2
, k = {1 · · · p}

= π/p, for symmetric sensor placement

the target g will be encapsulated eventually.

Proof. Consider a target g ∈ G. Let ug =
[dgcos(γg,T + θg) dgsin(γg,T + θg)] and ur =
[drcos(γr,T + θr) drsin(γr,T + θr)] be the control input
of a target and robot respectively at time T , and η be the
total robots currently present in the escape domain of the
target, that satisfy ∥cg,T − cr,T ∥ ≤ rescapeg . As outlined in
Section IV-C, the motion strategy of a robot can be broken
down as follows:
Case I: Robot is in an orbit Ori≥0 such that η = 0
We use the definition of stochastic stability in the sense of
Lyapunov [35] to show that a robot eventually reaches the
primary orbit Or0. Let V = ∥cg,T − cr,T ∥2 be the candidate
Lyapunov function defined on the the domain Dr ⊆ R2 such
that ∥cg,T − cr,T ∥ ≥ rencapg . Using Eq. (2) and Eq. (1) we
have, ∆V = ∥(cg,T + ug)− (cr,T + ur)∥2 − ∥cg,T − cr,T ∥2.
For ease of exposition, we will drop the subscript
T in the following analysis. On simplifying,
∆V = ∥ug − ur∥2 + 2(cg − cr) · (ug − ur). Fig. 8

Fig. 8: Relative kinematics of a robot-target interaction.

depicts the relative kinematics model between the target and
a robot where ω is the angle that the LOS vector, (cg − cr)
makes with the x-axis. Let l̂ = [cosω sinω] be the vector
along (cg − cr) and t̂ = [−sinω cosω] be the vector
tangential to it. Then,

∆V = d2g + d2r − 2ug · ur + 2 ∥cg − cr∥ l̂ · (ug − ur) (16)

(a) Robot is in a secondary orbit: For this case, a robot would
move towards the target, that is θr ∈ ΘLOS

g given in Eq. (8). If
η = 0, that is, there are no robots in the target’s escape domain,
the target moves randomly. Hence, θg ∈ [0 2π). That is, both
θg and θr are stochastic. Moreover, the control inputs ug and
ur are independent random vectors and their corresponding
expected values are given by,

E[ug] = dgE[cos(γg + θg) sin(γg + θg)]

= dg

[ 2π∫
0

cos(γg + θg)
1

2π
dθg

2π∫
0

sin(γg + θg)
1

2π
dθg

]
= 0 (17)

E[ur] = drE[cos(γr + θr) sin(γr + θr)]

= dr

[ ϕk+
π
p∫

ϕk−π
p

cos(γr + θr)
1

2π/p
dθr

ϕk+
π
p∫

ϕk−π
p

sin(γr + θr)
1

2π/p
dθr

]

= dr
sinφ

φ
[cos(γr + ϕk) sin(γr + ϕk)]

= dr
sinφ

φ
ûk
r (18)

where φ = π/p for symmetric sensor placement and ûk
r is

the unit vector in the direction of kth sensor. Intuitively, this
means that on an average the robot moves in the direction of
the kth sensor (receiving maximum intensity from the target)
with a step-size reduced by the factor sinφ/φ. Furthermore, as
p → ∞, E[ur] → drûk

r . That is, if the robot knows the exact
relative location of the target, it moves towards the target along
the line of sight vector with the maximum possible step size.
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Using Eq. (17) and Eq. (18), the expected value of change
in the Lyapunov function (as given by Eq. (16)) between two
consecutive time steps is,

E[∆V ] = d2g + d2r + 2E
[
∥cg − cr∥ l̂ · (ug − ur)

]
= d2g + d2r + 2 ∥cg − cr∥

(
E[ug]− E[ur]

)
· l̂

= d2g + d2r − 2 ∥cg − cr∥ dr
sinφ

φ
ûk
r · l̂ (19)

The maximum deviation of the unit vector in the direction of
the kth sensor, ûk

r from the LOS vector l̂ is limited to φ = π/p
(refer to Fig. 2), that is ûk

r · l̂ ≥ cosφ. Furthermore, when a
robot is in a secondary orbit ∥cg − cr∥ ≥ rencapg . Substituting
these bounds in Eq. (19) we have,

E[∆V ] ≤ d2g + d2r − 2rencapg dr
sinφ

φ
cosφ

For stability, we require that E[∆V ] ≤ 0. That is

d2r −
(
2rencapg

sinφ

φ
cosφ

)
dr + d2g ≤ 0 (20)

The necessary condition to satisfy the above inequality is that
cosφ > 0. That is, for symmetric sensor placement, the total
number of sensors on a robot must be greater than or equal
to three. For asymmetric sensor placement, this condition is
a design parameter to choose the maximum angular distance
φ between any two adjacent sensors. The roots of the above
quadratic inequality in dr give us an upper bound on the
maximum step-size of a robot dmax

r which is always larger
than the bound determined in Eq. (6). Hence Eq. (20) is
satisfied given the necessary condition.

(b) Robot is in the primary orbit: Once a robot reaches the
primary orbit, it moves tangentially to the orbit while ensuring
that ∥cg − cr∥ ≥ Orinner0 . To analyze this, we look at how the
LOS vector between a target and robot changes between two
time steps, which is given by ∆(cg−cr) = ug−ur. In Eq. (21)
and Eq. (22) we define uradgr and utangr representing the polar
coordinates corresponding to the radial and tangent component
of the change in LOS vector in global frame I.

uradgr = (ug − ur) · l̂ (21)

utangr = (ug − ur) · t̂ (22)

As explained earlier, to ensure a target’s encirclement, it
is necessary that a robot is able to complete a revolution
around the target in the primary orbit Or0. We evaluate
this stochastically by computing the expected value of the
change in the tangential component of the relative LOS vector,
E[utangr ] = E[ug] · t̂−E[ur] · t̂. For a clockwise orbital rotation,
θr ∈ Θtan,−1

g . Since η = 0 for this case, θg ∈ [0, 2π).

Simplifying and substituting Eq. (17) in the above equation
we have

E[utangr ] = −dr

[ ϕk+
π
p +π

2∫
ϕk−π

p +π
2

cos(γr + θr)
1

2π/p
dθr

ϕk+
π
p +π

2∫
ϕk−π

p +π
2

sin(γr + θr)
1

2π/p
dθr

]
· t̂

= −dr
sinφ

φ
[−sin(γr + ϕk) cos(γr + ϕk)] · t̂

= −dr
sinφ

φ
ûk
r · l̂ (23)

Eq. (23) shows that a robot moves clockwise in the primary
orbit with an expected tangential step-size of dr sinφ

φ cos(φ)
with respect to the target.

Case II: ∥cg,T − cr,T ∥ ≤ rescapeg

At a timestep T , it is possible that a robot is marginally outside
the escape domain of the target but is unable to move due to
the presence of a nearby robot at a distance of rsafer . This
behavior could lead to ∥cg,T+1 − cr,T+1∥ < rescapeg , resulting
in η > 0. The target would then move such that it can escape
from all the robots present in its escape domain.

Let ψg be the angle between a target’s intended heading and
the LOS vector (cg,T −cr,T ), as shown in Fig. 8. If η = 1, then
ψg ∈ [3π/2, π/2]. If η = 2 and α is the angle that these robots
subtend at the center of the target, as shown in Fig. 9, then
ψg ∈ [3π/2 + α, π/2] or ψg ∈ [3π/2, π/2 − α], depending
on which robot ψg is measured with respect to. Without loss
of generality, we can consider one of these. That is, if η > 1,
the available angular range of the target for escaping decreases
from π to (π − (η − 1)α).

To determine α, we use the fact that robots in an orbit
disperse such that, on average, they are outside each other’s
influence region. Then, using geometry shown in Fig. 9,

α = cos−1

(
1− (βr+rr)

2

2(rescape
g )2

)
. Note that, the maximum escaping

angular range of a target is limited to π (when η = 1).
Hence, for η > π/α, the target can no longer escape with
the maximum possible step size.

Fig. 9: Geometric configuration for computing bounds on the
ratio between target and robot step-sizes.

For Case II, we have to ensure that (i) robots implementing
tangential control law in the primary orbit are able to encircle
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the target, that is E[utangr ] ≤ 0 if θr ∈ Θtan,−1
g and E[utangr ] ≥ 0

if θr ∈ Θtan,1
g , and (ii) robots in secondary orbits are able to

move towards the target, that is E[uradgr ] ≤ 0 for θr ∈ ΘLOS
g .

Using Eq. (22) and the tangential control input (θr ∈
Θtan,−1

g ) for robots present in Or0 we have,

E[utangr ] = dgE[sinψg]− E[ur] · t̂

= dg

π
2∫

3π
2 +(η−1)α

sinψg
1

π − (η − 1)α
dψg − E[ur] · t̂

= dg
sin((η − 1)α)

(π − (η − 1)α)
− dr

sinφ

φ
ûk
r · l̂

To ensure clockwise orbital rotation, E[utangr ] ≤ 0, that is,

max
η≤π/α

(
dg

sin((η − 1)α)

(π − (η − 1)α)

)
≤ min

ûk
r ·̂l≥cosφ

(
dr

sinφ

φ
ûk
r · l̂

)
dg ≤ α

sin(π − α)
dr

sinφ

φ
cosφ

(24)

Intuitively, E[ug · t̂] is maximal when the target has the least
freedom in choosing its motion, that is η = π/α. Similarly,
E[ur · t̂] is minimal when the average heading direction
perpendicular to ûk

r is deviated the most from t̂.
Now, we need to ensure that the robots in the secondary

orbits move toward an escaping target. Using Eq. (21) and the
LOS control input (θr ∈ ΘLOS

g ) for robots present in Ori>0

we have,

E[uradgr ] = E[ug · l̂]− E[ur] · l̂

= dg

π
2∫

3π
2 +(η−1)α

cosψg
1

π − (η − 1)α
dψg − E[ur] · l̂

= dg
1 + cos((η − 1)α)

(π − (η − 1)α)
− dr

sinφ

φ
ûk
r · l̂

The distance between a target and robot will decrease if
E[uradgr ] ≤ 0. That is,

max
η≤π/α

(
dg

1 + cos((η − 1)α)

(π − (η − 1)α)

)
≤ min

ûk
r ·̂l≥cosφ

(
dr

sinφ

φ
ûk
r · l̂

)
dg ≤ π

2
dr

sinφ

φ
cosφ (25)

Eq. (24) and Eq. (25) determine an upper bound on the
maximum step size of a target as given by condition (1).

In Fig. 10 we show how the ratio of the step-size be-
tween a target and robot, λ, changes with the number of
sensors p and ∠α (which is proportional to how well the
robots disperses in the primary orbit). As derived above,

λ = min

(
π
2 ,

α
sin(π−α)

)
sin(2π/p)

2π/p . For a given number of

sensors on a robot, λ increases with an increase in ∠α until
π/2 > α

sin(π−α) . We can also see that with an increase in the
number of sensors on a robot, p, the ratio of the step size
of a target to a robot increases and tends to π/2 > 1, that
is, we can guarantee convergence (encapsulation) even when

Fig. 10: For a given number of sensors on a robot p, λ
increases with an increase in ∠α until π/2 > α

sin(π−α) . The
ratio between the step-size of a target and robot tends to π/2
with an increasing p indicating that the swarm can encapsulate
a target moving faster than the individual robots in the swarm.

the target moves faster than the robots in the swarm. Previous
approaches in the literature typically assume that the target
moves slower than the robots [9]–[13].

The increased accuracy in the estimation of the relative
location of nearby robots and a target enables the robot to
disperse quickly in the primary orbit with less chattering.
Apart from the more accurate estimation, with an increase
in total sensors on a robot, the sensing radius βr of a robot
increases (Eq. (7)), which enables quick dispersion because a
robot tends to remain outside other robots’ influence region.
This results in blocking the escaping paths of the target
efficiently. The ratio between the target and robot step-sizes
is zero when the robot has less than three sensors, for all
values of ∠α, implying that a minimum of three sensors are
required to encapsulate a moving target.

Absence of livelocks and encapsulation of the target g:
Similar to Lemma V.3, we can compute the total number of
robots, ni, that can be simultaneously present in an ith orbit.
If at a time step T there are less than ni robots in Ori, empty
spots that could potentially be occupied by nearby robots, will
be present in this orbit. As discussed in Section IV-C, the
robots in the influence of a target either move toward the target
or move, typically, in opposite tangential directions in adjacent
orbits. This ensures that a dynamic empty spot present in an
orbit Ori and the robots present in Ori+1 move so as to align
with each other. As we proved above, the robots present in
the encapsulation ring (or the primary orbit) are guaranteed
to continuously orbit the target. So, when there are less than
ng robots in the encapsulation ring, a dynamic empty spot is
present in the primary orbit which will be eventually occupied
by a robot orbiting in the secondary orbit Or1. When either all
the empty spots in the primary orbit are filled by the robots or
there are at least ng robots in it, a target will be encapsulated.
Once that happens we have from assumption (4) that the target
will stop emitting its signal and set its control parameters to
zero thereafter. All the robots that were in secondary orbits
and in the influence of this target will transition into random
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walk behavior. Hence assumption (4) ensures that the robots
would not be stuck in the secondary orbits of an encapsulated
target and can transition into target-searching behavior after a
target is encapsulated.

Lemma V.5. Consider a swarm with a total of n robots and
a target g ∈ G moving randomly in the bounded environment
(as described by motion model 1 in Section III). If,

1) the inner radius of the primary orbit Orinner0 ≥ rsafeg +
dmax
r

2) the maximum step size of the target, dmax
g ≤ λdmax

r

where

λ =

(
n−

⌊
2π

cos−1

(
1− (βr+rr)2

2(Orinner
0 )2

)⌋+ 1

)−1

the target g will be encapsulated eventually.

Proof. The challenge in encapsulating a randomly moving
target is in ensuring that robots avoid colliding with a target.
For example, say at time T a robot i is in the primary orbit
sandwiched between a target on one side at a distance of
rsafeg + dmax

g and a robot j at a distance of rsafer on the other
side, along the target’s LOS vector. Furthermore, consider that
for time steps T until T +2, the randomly moving target acts
adversarial by trying to collide with the robot. That is, at every
time step it moves towards robot i.

To ensure that the ith robot avoids colliding with the target
at T +1, it must choose a heading direction γi ∈ Θavo

g . How-
ever, due to the presence of robot j, it cannot move a nonzero
distance at time T in the intended heading direction. Hence
the robot would violate the target-robot safety specification at
T + 1. Now, at T , say the jth robot had moved away from
robot i, implying that at T + 1, the ith robot will not sense
the jth robot and will be free to move away from the target.
That is, it took a minimum of two time steps for the ith robot
to move away from the target. Hence, to ensure safety for
this scenario, dmax

g ≤ dmax
r /2 and Orinner0 ≥ rsafeg + dmax

r

(condition 1).
Generalizing this, let the total robots present in the environ-

ment be n and ñ0 =

⌊
2π

cos−1

(
1− (βr+rr)2

2(Orinner
0 )2

)⌋ be the number

of robots that can be simultaneously present in the primary
orbit marginally outside Orinner0 without repelling each other.
Then, in the worst case scenario, the total time steps for which
a robot present on Orinnero may have to remain idle (dr = 0)
is (n− ñ0 +1). This follows from the fact that only (n− ñ0)
number of robots contribute to the idle waiting time of a robot
in the primary orbit present on Orinner0 . This constraint on the
idle time of a robot in the primary orbit gives us an upper
bound λ (condition 2) on how slow an adversarial target needs
to be with respect to a robot to ensure safety. The analysis for
stability and encapsulation follows from Lemma V.4.

Lemma V.6. Consider a target g ∈ G moving in an unknown
pattern until it senses a robot in its escape domain (as
described by motion model 3 in Section III). If,

1) the maximum step size of the target when moving in an
unknown pattern, dmax

g < λdmax
r where

λ =
sinφ

φ
cos(φ),

φ = π/p, for symmetric sensor placement

2) the maximum step-size of the target when escaping
nearby robots,

λ = min

(
π

2
,

α

sin(π − α)

)
sinφ

φ
cosφ

α = cos−1

(
1− (βr + rr)

2

2(rescapeg )2

)
φ =

max(ϕk − ϕk+1)

2
, k = {1 · · · p}

= π/p, for symmetric sensor placement

the target g will be encapsulated eventually.

Proof. This scenario is comparable to hunting problems [22],
[23] where the target moves at slower speeds in some unknown
motion pattern. But as soon as it detects (target’s sensing
limited to rescapeg ) a predator (robot) in its domain, it escapes
at a faster speed than the predator. To ensure that robots in
the secondary orbits move toward the target, we require that,

E[ug · l̂]− E[ur · l̂] < 0

dg(ûg · l̂) < dr
sinφ

φ
cosφ (26)

Eq. (26) is always satisfied if dg < dr
sinφ
φ cosφ. It is trivial

to show using Eq. (22) and Eq. (18) that the constraint dg <
dr

sinφ
φ cosφ also ensures that robot in a primary orbit will

encircle the target. As shown in Lemma V.4, the robots can
successfully encapsulate an escaping target as long as a target
step-size is within the bounds given by Eq. (25) and Eq. (24).

VI. SIMULATION RESULTS

In this section, we study the effect of the total number of
sensors p, target-robot step-size ratio λ, and noisy sensors on
the global behavior of the swarm. For each case, we consider
three different target motion models: (i) target performs
random walk in the environment, (ii) target perform random
walk until there exists a robot such that rgr ≤ rescapeg , (iii)
target moves with constant velocity until there exists a robot
such that rgr ≤ rescapeg . The simulation environment consists
of one moving target and ten robots. The total time is capped
at 4000 time-steps. Due to the inherent randomness in the
motion of the robots and targets, we ran 50 simulations for
each data point with the same initial conditions. All the
robots were initialized arbitrarily such that they lie in a sector
of π/4 with respect to the target’s center. This is done to
show the ability of the swarm to successfully encapsulate a
target when it has all the escape paths open.

Effect of the total number of sensors: For a given p, with
an increase in the radius of the escape domain of a target,
the bound on the maximum step size of a target decreases
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Fig. 11: For a given p, the ratio between the step-size of
a target and robot decreases with an increase in rescapeg ,
indicating that as the target is able to detect robots sooner,
to ensure encapsulation it must also move slower.

as shown in Fig. 11. This is because, with an increase in
rescapeg , a target gets a higher margin for escaping. From
Lemmas V.4 - V.6, the ratio λ, and hence the target’s
step size, is dependent on the total number of sensors on a
robot, p, and rescapeg . When the escape domain of the target,
rescapeg ≤ rsafeg + π

2 d
max
r , an increase in the total number

of sensors on a robot enables the swarm to capture a faster
moving target. This can be seen in Fig. 11, where the blue
line corresponds to rescapeg = rsafeg + π

2 rr. As p increases,
dmax
r tends to rr and λ becomes greater than 1. If the escape

domain is further increased, that is rescapeg > rsafeg + π
2 d

max
r ,

then dmax
g decreases proportionally because a robot’s step size

is limited to dmax
r . For a given ng , rescapeg and rencapg , Fig. 12

shows how varying the total number of sensors, and hence the
target-robot step-size ratio λ, affects the total time taken for
target encapsulation for each type of target motion model.

Effect of noisy sensors: To study the effect of noise
we added Gaussian noise to each sensor reading,
zks = (1 − nks)

∑
j∈Nk

s
Bs(d

k
j ), nks ∼ N (0, σ2) and

nks ≤ 1. Similar to the results obtained in our previous work
[5], for all noise levels, we did not observe any collision
within the swarm. However, to ensure that a robot does not
collide with a moving target or the environment boundary, we
increase the radius of Orinner0 in proportion to the standard
deviation of the noise. Fig. 13a shows the total time taken by
the swarm to encapsulate a target with p = 7 and λ = 1.1549.
With an increase in noise level, a robot’s estimate of the
target’s location becomes less accurate, leading to an increase
in the total time taken for encapsulation. Furthermore, as can
be seen in Fig. 13b for noise levels greater than 50%, the
probability of success for target encapsulation drops to 40%
when a target moves with constant velocity.

Effect of initial swarm coverage: We next study how the
initial distribution of the swarm plays a role in encapsulating
a faster-moving target. Given that our control strategy for a
robot in the swarm is to encapsulate the target by moving
in orbits and shutting off its escaping directions, we expect

(a)

(b)

(c)

Fig. 12: The total time taken for task completion as a function
of p such that (a) target performs random walk in the environ-
ment (b) target performs random walk while escaping from
nearby robots (c) target moves with a constant velocity while
escaping from nearby robots. The box plot shows median,
25th and 75th percentiles and the min/max values. The line
connects the medians.

that the initial placement of the swarm around a target would
affect how quickly encapsulation happens. We consider
a single target in the environment with 10 robots, each
equipped with 7 sensors such that λ = 1.1549 and run 50
simulations for each condition. Fig. 14b shows the initial
swarm distribution with varying sector coverage around a
target with respect to its center. Fig. 14a shows that with an
increase in initial coverage around a faster-moving target,
encapsulation time decreases quickly. On increasing the initial
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(a)

(b)

Fig. 13: (a) The total time taken for task completion as a
function of noise levels for p = 7, λ = 1.1549 (total time
capped at 4000 time-steps) and different target motion models
(b) probability of success for task completion

swarm distribution from a sector of π/8 to 2π we observed a
drop of 50% in the total time taken for encapsulation.

Comparison with algorithm in [5]: The algorithm we
proposed in this paper is more efficient in terms of the total
time taken by the swarm to encapsulate a static target as
compared with our previous method in [5]. This is due to the
orbiting behavior of the swarm when a robot cannot move
toward the target which results in a faster occupancy of empty
spots in the encapsulation ring. This is shown in Fig. 15.

Scalability: In the supplementary video, we run additional
simulations to show the effect of asymmetric sensor
placement, the validity of our algorithm for non-circular
robots and demonstrate the scalability of our algorithm with
a large-scale simulation of 120 robots and 15 targets moving
with different motion models.

Effect of targets with overlapping influence regions: In
the supplementary video, we demonstrate the consequences

(a)

(b)

Fig. 14: (a) The total time taken for task completion decreases
as the initial coverage of the swarm around a target increases.
(b) Initial swarm distribution for different sector coverage
around a target with respect to its center.

Fig. 15: For a given p, the total time taken to encapsulate a
static target is lower for the new approach introduced in this
paper as compared to our previous approach in [5].

of relaxing Assumption 2 without making any adjustments
to the current algorithm. We observed instances of collisions
between a robot and a dynamic target. This occurs because a
robot determines the nearest possible location of a target based
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on the sensor receiving the maximum signal strength from that
target (refer to Fig. 7). This approach is effective only when
Assumption 2 remains valid. However, if a robot can sense
more than one target simultaneously, there is a possibility that
in addition to the sensor receiving the maximum intensity from
the targets, other sensors may detect signal strengths exceeding
the safety threshold. In such cases, the robot may collide with
a target if readings from all sensors are not considered.

Conversely, we observed instances of deadlocks when we
incorporated readings from all the sensors, particularly in
scenarios where all sensors received readings exceeding the
safety threshold. When utilizing Algorithm 1, we can address
deadlocks in the case of dynamic robots by setting bounds
on the influence region of a robot’s source and leveraging
the robots’ active avoidance mechanisms. However, upper-
bounding an adversarial target’s influence region does not
guarantee the absence of deadlocks, as we have no control
over the targets’ behavior.

An additional challenge that arises when a robot can sense
multiple targets simultaneously, is estimating the direction
of the target using the strategy outlined in this paper and
subsequently computing orbits around it. For instance, if a
robot is sensing two targets, the orbits will be adjusted towards
a center position between these two targets, depending on the
robot’s proximity to them. This can lead to the robot moving
towards a primary orbit that does not align with any specific
target, resulting in no encapsulation. In our future work, we
will investigate how the control algorithm should be modified
to address deadlocks when relaxing Assumption 2.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we propose a decentralized scalable algorithm
for a minimalist swarm to encapsulate dynamic targets with
unknown motion without requiring the exact knowledge of
the relative positions or memory of the previous control
inputs. We consider different scenarios of target motion and
compute bounds on the target-robot step-size ratio to provide
convergence guarantees. We observed the emergence of robots
maintaining an approximate phase difference of 2π/ng in the
encapsulating ring, resulting in uniform distribution around
the target and hence closing off its escaping directions. Fur-
thermore, using extensive simulations we studied the effect of
noisy sensors and showed the validity of our algorithm for non-
circular robots. Our controller can be generalized for robots
equipped with non-isotropic sensors which are not accurate in
measuring the relative distances between two entities. If the
bounds on the measurement error are known, our analysis can
be used to compute bounds on the target-robot step-size ratio
to ensure guaranteed target encapsulations. In this paper, we
do not consider the presence of obstacles. However, the control
algorithm we propose includes collision avoidance with both
moving robots and targets in close proximity as well as static
obstacles like the environment boundary. By conducting a
similar analysis, this algorithm can be expanded to encompass
other dynamic and static obstacles existing in the environment,
as long as a robot’s sensor can detect the signals emitted by
these obstacles.

In our future work, we will explore how the control algo-
rithm should change when we relax Assumption 2. Further-
more, we will implement our algorithm on physical robots
and will also study the trade-off between incorporating the
memory of previous states on the desired emergent behavior
and providing timing bounds on task completion.
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